Spaces:
Running
Running
File size: 7,900 Bytes
36f7534 5fbdd3c 36f7534 de9c8c4 36f7534 5fbdd3c 787a8df 5fbdd3c 9ced7bd 5fbdd3c de9c8c4 5fbdd3c d7a594b 5fbdd3c 9ced7bd 5fbdd3c 36f7534 5fbdd3c 9ced7bd 5fbdd3c 36f7534 5fbdd3c 9ced7bd 5fbdd3c 36f7534 787a8df 36f7534 6a8bf30 36f7534 5fbdd3c 36f7534 5fbdd3c 36f7534 5fbdd3c 36f7534 787a8df 36f7534 bce5ce9 36f7534 bce5ce9 36f7534 bce5ce9 36f7534 bce5ce9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, AutoConfig, AutoModelForSequenceClassification, TrainingArguments
from shared import CustomTokens, GeneralArguments
from dataclasses import dataclass, field
from typing import Optional, Union
import torch
import classify
import base64
import re
import requests
import json
import logging
logging.basicConfig()
logger = logging.getLogger(__name__)
# Public innertube key (b64 encoded so that it is not incorrectly flagged)
INNERTUBE_KEY = base64.b64decode(
b'QUl6YVN5QU9fRkoyU2xxVThRNFNURUhMR0NpbHdfWTlfMTFxY1c4').decode()
YT_CONTEXT = {
'client': {
'userAgent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.110 Safari/537.36,gzip(gfe)',
'clientName': 'WEB',
'clientVersion': '2.20211221.00.00',
}
}
_YT_INITIAL_DATA_RE = r'(?:window\s*\[\s*["\']ytInitialData["\']\s*\]|ytInitialData)\s*=\s*({.+?})\s*;\s*(?:var\s+meta|</script|\n)'
def get_all_channel_vids(channel_id):
continuation = None
while True:
if continuation is None:
params = {'list': channel_id.replace('UC', 'UU', 1)}
response = requests.get(
'https://www.youtube.com/playlist', params=params)
items = json.loads(re.search(_YT_INITIAL_DATA_RE, response.text).group(1))['contents']['twoColumnBrowseResultsRenderer']['tabs'][0]['tabRenderer']['content'][
'sectionListRenderer']['contents'][0]['itemSectionRenderer']['contents'][0]['playlistVideoListRenderer']['contents']
else:
params = {'key': INNERTUBE_KEY}
data = {
'context': YT_CONTEXT,
'continuation': continuation
}
response = requests.post(
'https://www.youtube.com/youtubei/v1/browse', params=params, json=data)
items = response.json()[
'onResponseReceivedActions'][0]['appendContinuationItemsAction']['continuationItems']
new_token = None
for vid in items:
info = vid.get('playlistVideoRenderer')
if info:
yield info['videoId']
continue
info = vid.get('continuationItemRenderer')
if info:
new_token = info['continuationEndpoint']['continuationCommand']['token']
if new_token is None:
break
continuation = new_token
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
default=None,
metadata={
'help': 'Path to pretrained model or model identifier from huggingface.co/models'
}
)
cache_dir: Optional[str] = field(
default='models',
metadata={
'help': 'Where to store the pretrained models downloaded from huggingface.co'
},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={
'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'
},
)
model_revision: str = field(
default='main',
metadata={
'help': 'The specific model version to use (can be a branch name, tag name or commit id).'
},
)
use_auth_token: bool = field(
default=False,
metadata={
'help': 'Will use the token generated when running `transformers-cli login` (necessary to use this script '
'with private models).'
},
)
import itertools
from errors import InferenceException, ModelLoadError
@dataclass
class InferenceArguments(ModelArguments):
model_name_or_path: str = field(
default='Xenova/sponsorblock-small',
metadata={
'help': 'Path to pretrained model used for prediction'
}
)
classifier_model_name_or_path: str = field(
default='EColi/SB_Classifier',
metadata={
'help': 'Use a pretrained classifier'
}
)
max_videos: Optional[int] = field(
default=None,
metadata={
'help': 'The number of videos to test on'
}
)
start_index: int = field(default=None, metadata={
'help': 'Video to start the evaluation at.'})
channel_id: Optional[str] = field(
default=None,
metadata={
'help': 'Used to evaluate a channel'
}
)
video_ids: str = field(
default_factory=lambda: [],
metadata={
'nargs': '+'
}
)
output_as_json: bool = field(default=False, metadata={
'help': 'Output evaluations as JSON'})
min_probability: float = field(
default=0.5, metadata={'help': 'Remove all predictions whose classification probability is below this threshold.'})
def __post_init__(self):
self.video_ids = list(map(str.strip, self.video_ids))
if any(len(video_id) != 11 for video_id in self.video_ids):
raise InferenceException('Invalid video IDs (length not 11)')
if self.channel_id is not None:
start = self.start_index or 0
end = None if self.max_videos is None else start + self.max_videos
channel_video_ids = list(itertools.islice(get_all_channel_vids(
self.channel_id), start, end))
logger.info(
f'Found {len(channel_video_ids)} for channel {self.channel_id}')
self.video_ids += channel_video_ids
def get_model_tokenizer_classifier(inference_args: InferenceArguments, general_args: GeneralArguments):
original_path = inference_args.model_name_or_path
# Load main model and tokenizer
model, tokenizer = get_model_tokenizer(inference_args, general_args)
# Load classifier
inference_args.model_name_or_path = inference_args.classifier_model_name_or_path
classifier_model, classifier_tokenizer = get_model_tokenizer(
inference_args, general_args, model_type='classifier')
classifier = classify.SponsorBlockClassificationPipeline(
classifier_model, classifier_tokenizer)
# Reset to original model_name_or_path
inference_args.model_name_or_path = original_path
return model, tokenizer, classifier
def get_model_tokenizer(model_args: ModelArguments, general_args: Union[GeneralArguments, TrainingArguments] = None, config_args=None, model_type='seq2seq'):
if model_args.model_name_or_path is None:
raise ModelLoadError('Must specify --model_name_or_path')
if config_args is None:
config_args = {}
use_auth_token = True if model_args.use_auth_token else None
config = AutoConfig.from_pretrained(
model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=use_auth_token,
**config_args
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
use_auth_token=use_auth_token,
)
model_type = AutoModelForSeq2SeqLM if model_type == 'seq2seq' else AutoModelForSequenceClassification
model = model_type.from_pretrained(
model_args.model_name_or_path,
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=use_auth_token,
)
# Add custom tokens
CustomTokens.add_custom_tokens(tokenizer)
model.resize_token_embeddings(len(tokenizer))
# Potentially move model to gpu
if general_args is not None and not general_args.no_cuda:
model.to('cuda' if torch.cuda.is_available() else 'cpu')
return model, tokenizer
|