sponsorblock-ml / app.py
Joshua Lochner
Update streamlit app to download the classifier and vectorizer from the hub
00f77c2
raw
history blame
5.24 kB
from math import ceil, floor
import streamlit.components.v1 as components
from transformers import (
AutoModelForSeq2SeqLM,
AutoTokenizer,
)
import streamlit as st
import sys
import os
import json
from urllib.parse import quote
from huggingface_hub import hf_hub_download
# Allow direct execution
sys.path.insert(0, os.path.join(os.path.dirname(os.path.abspath(__file__)), 'src')) # noqa
from predict import SegmentationArguments, ClassifierArguments, predict as pred, seconds_to_time # noqa
from evaluate import EvaluationArguments
from shared import device
st.set_page_config(
page_title="SponsorBlock ML",
page_icon="🤖",
# layout='wide',
# initial_sidebar_state="expanded",
menu_items={
'Get Help': 'https://github.com/xenova/sponsorblock-ml',
'Report a bug': 'https://github.com/xenova/sponsorblock-ml/issues/new/choose',
# 'About': "# This is a header. This is an *extremely* cool app!"
}
)
MODEL_PATH = 'Xenova/sponsorblock-small_v2022.01.19'
CLASSIFIER_PATH = 'Xenova/sponsorblock-classifier'
@st.cache(allow_output_mutation=True)
def persistdata():
return {}
# Faster caching system for predictions (No need to hash)
predictions_cache = persistdata()
@st.cache(allow_output_mutation=True)
def load_predict():
# Use default segmentation and classification arguments
evaluation_args = EvaluationArguments(model_path=MODEL_PATH)
segmentation_args = SegmentationArguments()
classifier_args = ClassifierArguments()
model = AutoModelForSeq2SeqLM.from_pretrained(evaluation_args.model_path)
model.to(device())
tokenizer = AutoTokenizer.from_pretrained(evaluation_args.model_path)
# Save classifier and vectorizer
hf_hub_download(repo_id=CLASSIFIER_PATH, filename=classifier_args.classifier_file, cache_dir=classifier_args.classifier_dir)
hf_hub_download(repo_id=CLASSIFIER_PATH, filename=classifier_args.vectorizer_file, cache_dir=classifier_args.classifier_dir)
def predict_function(video_id):
if video_id not in predictions_cache:
predictions_cache[video_id] = pred(
video_id, model, tokenizer,
segmentation_args=segmentation_args,
classifier_args=classifier_args
)
return predictions_cache[video_id]
return predict_function
CATGEGORY_OPTIONS = {
'SPONSOR': 'Sponsor',
'SELFPROMO': 'Self/unpaid promo',
'INTERACTION': 'Interaction reminder',
}
# Load prediction function
predict = load_predict()
def main():
# Display heading and subheading
st.write('# SponsorBlock ML')
st.write('##### Automatically detect in-video YouTube sponsorships, self/unpaid promotions, and interaction reminders.')
# Load widgets
video_id = st.text_input('Video ID:') # , placeholder='e.g., axtQvkSpoto'
categories = st.multiselect('Categories:',
CATGEGORY_OPTIONS.keys(),
CATGEGORY_OPTIONS.keys(),
format_func=CATGEGORY_OPTIONS.get
)
# Hide segments with a confidence lower than
confidence_threshold = st.slider(
'Confidence Threshold (%):', min_value=0, max_value=100)
video_id_length = len(video_id)
if video_id_length == 0:
return
elif video_id_length != 11:
st.exception(ValueError('Invalid YouTube ID'))
return
with st.spinner('Running model...'):
predictions = predict(video_id)
if len(predictions) == 0:
st.success('No segments found!')
return
submit_segments = []
for index, prediction in enumerate(predictions, start=1):
if prediction['category'] not in categories:
continue # Skip
confidence = prediction['probability'] * 100
if confidence < confidence_threshold:
continue
submit_segments.append({
'segment': [prediction['start'], prediction['end']],
'category': prediction['category'].lower(),
'actionType': 'skip'
})
start_time = seconds_to_time(prediction['start'])
end_time = seconds_to_time(prediction['end'])
with st.expander(
f"[{prediction['category']}] Prediction #{index} ({start_time} \u2192 {end_time})"
):
url = f"https://www.youtube-nocookie.com/embed/{video_id}?&start={floor(prediction['start'])}&end={ceil(prediction['end'])}"
# autoplay=1controls=0&&modestbranding=1&fs=0
# , width=None, height=None, scrolling=False
components.iframe(url, width=670, height=376)
text = ' '.join(w['text'] for w in prediction['words'])
st.write(f"**Times:** {start_time} \u2192 {end_time}")
st.write(
f"**Category:** {CATGEGORY_OPTIONS[prediction['category']]}")
st.write(f"**Confidence:** {confidence:.2f}%")
st.write(f'**Text:** "{text}"')
json_data = quote(json.dumps(submit_segments))
link = f'[Submit Segments](https://www.youtube.com/watch?v={video_id}#segments={json_data})'
st.markdown(link, unsafe_allow_html=True)
if __name__ == '__main__':
main()