sponsorblock-ml / app.py
Joshua Lochner
Remove duplicated methods from streamlit app
a9123fa
raw
history blame
8.6 kB
from functools import partial
from math import ceil, floor
import streamlit.components.v1 as components
import streamlit as st
import sys
import os
import json
from urllib.parse import quote
# Allow direct execution
sys.path.insert(0, os.path.join(os.path.dirname(os.path.abspath(__file__)), 'src')) # noqa
from predict import SegmentationArguments, ClassifierArguments, predict as pred # noqa
from evaluate import EvaluationArguments
from shared import seconds_to_time, CATGEGORY_OPTIONS
from utils import regex_search
from model import get_model_tokenizer, get_classifier_vectorizer
st.set_page_config(
page_title='SponsorBlock ML',
page_icon='🤖',
# layout='wide',
# initial_sidebar_state="expanded",
menu_items={
'Get Help': 'https://github.com/xenova/sponsorblock-ml',
'Report a bug': 'https://github.com/xenova/sponsorblock-ml/issues/new/choose',
# 'About': "# This is a header. This is an *extremely* cool app!"
}
)
YT_VIDEO_REGEX = r'''(?x)^
(?:
# http(s):// or protocol-independent URL
(?:https?://|//)
(?:(?:(?:(?:\w+\.)?[yY][oO][uU][tT][uU][bB][eE](?:-nocookie|kids)?\.com/|
youtube\.googleapis\.com/) # the various hostnames, with wildcard subdomains
(?:.*?\#/)? # handle anchor (#/) redirect urls
(?: # the various things that can precede the ID:
# v/ or embed/ or e/
(?:(?:v|embed|e)/(?!videoseries))
|(?: # or the v= param in all its forms
# preceding watch(_popup|.php) or nothing (like /?v=xxxx)
(?:(?:watch|movie)(?:_popup)?(?:\.php)?/?)?
(?:\?|\#!?) # the params delimiter ? or # or #!
# any other preceding param (like /?s=tuff&v=xxxx or ?s=tuff&v=V36LpHqtcDY)
(?:.*?[&;])??
v=
)
))
|(?:
youtu\.be # just youtu.be/xxxx
)/)
)? # all until now is optional -> you can pass the naked ID
# here is it! the YouTube video ID
(?P<id>[0-9A-Za-z_-]{11})'''
# https://github.com/google-research/text-to-text-transfer-transformer#released-model-checkpoints
# https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#experimental-t5-pre-trained-model-checkpoints
# https://huggingface.co/docs/transformers/model_doc/t5
# https://huggingface.co/docs/transformers/model_doc/t5v1.1
# Faster caching system for predictions (No need to hash)
@st.cache(persist=True, allow_output_mutation=True)
def create_prediction_cache():
return {}
@st.cache(persist=True, allow_output_mutation=True)
def create_function_cache():
return {}
prediction_cache = create_prediction_cache()
prediction_function_cache = create_function_cache()
MODELS = {
'Small (293 MB)': {
'pretrained': 'google/t5-v1_1-small',
'repo_id': 'Xenova/sponsorblock-small',
'num_parameters': '77M'
},
'Base v1 (850 MB)': {
'pretrained': 't5-base',
'repo_id': 'Xenova/sponsorblock-base-v1',
'num_parameters': '220M'
},
'Base v1.1 (944 MB)': {
'pretrained': 'google/t5-v1_1-base',
'repo_id': 'Xenova/sponsorblock-base-v1.1',
'num_parameters': '250M'
}
}
# Create per-model cache
for m in MODELS:
if m not in prediction_cache:
prediction_cache[m] = {}
CLASSIFIER_PATH = 'Xenova/sponsorblock-classifier'
def predict_function(model_id, model, tokenizer, segmentation_args, classifier_args, video_id):
if video_id not in prediction_cache[model_id]:
prediction_cache[model_id][video_id] = pred(
video_id, model, tokenizer,
segmentation_args=segmentation_args,
classifier_args=classifier_args
)
return prediction_cache[model_id][video_id]
def load_predict(model_id):
model_info = MODELS[model_id]
if model_id not in prediction_function_cache:
# Use default segmentation and classification arguments
evaluation_args = EvaluationArguments(model_path=model_info['repo_id'])
segmentation_args = SegmentationArguments()
classifier_args = ClassifierArguments(
min_probability=0) # Filtering done later
model, tokenizer = get_model_tokenizer(evaluation_args.model_path)
prediction_function_cache[model_id] = partial(
predict_function, model_id, model, tokenizer, segmentation_args, classifier_args)
return prediction_function_cache[model_id]
def main():
top = st.container()
output = st.empty()
# Display heading and subheading
top.markdown('# SponsorBlock ML')
top.markdown(
'##### Automatically detect in-video YouTube sponsorships, self/unpaid promotions, and interaction reminders.')
# Add controls
model_id = top.selectbox(
'Select model', MODELS.keys(), index=0, on_change=output.empty)
video_input = top.text_input(
'Video URL/ID:', on_change=output.empty)
categories = top.multiselect('Categories:',
CATGEGORY_OPTIONS.keys(),
CATGEGORY_OPTIONS.keys(),
format_func=CATGEGORY_OPTIONS.get, on_change=output.empty
)
# Hide segments with a confidence lower than
confidence_threshold = top.slider(
'Confidence Threshold (%):', min_value=0, value=50, max_value=100, on_change=output.empty)
if len(video_input) == 0: # No input, do not continue
return
# Load prediction function
with st.spinner('Loading model...'):
predict = load_predict(model_id)
with output.container(): # Place all content in output container
video_id = regex_search(video_input, YT_VIDEO_REGEX)
if video_id is None:
st.exception(ValueError('Invalid YouTube URL/ID'))
return
with st.spinner('Running model...'):
predictions = predict(video_id)
if len(predictions) == 0:
st.success('No segments found!')
return
submit_segments = []
for index, prediction in enumerate(predictions, start=1):
if prediction['category'] not in categories:
continue # Skip
confidence = prediction['probability'] * 100
if confidence < confidence_threshold:
continue
submit_segments.append({
'segment': [prediction['start'], prediction['end']],
'category': prediction['category'].lower(),
'actionType': 'skip'
})
start_time = seconds_to_time(prediction['start'])
end_time = seconds_to_time(prediction['end'])
with st.expander(
f"[{prediction['category']}] Prediction #{index} ({start_time} \u2192 {end_time})"
):
url = f"https://www.youtube-nocookie.com/embed/{video_id}?&start={floor(prediction['start'])}&end={ceil(prediction['end'])}"
# autoplay=1controls=0&&modestbranding=1&fs=0
# , width=None, height=None, scrolling=False
components.iframe(url, width=670, height=376)
text = ' '.join(w['text'] for w in prediction['words'])
st.write(f"**Times:** {start_time} \u2192 {end_time}")
st.write(
f"**Category:** {CATGEGORY_OPTIONS[prediction['category']]}")
st.write(f"**Confidence:** {confidence:.2f}%")
st.write(f'**Text:** "{text}"')
json_data = quote(json.dumps(submit_segments))
link = f'[Submit Segments](https://www.youtube.com/watch?v={video_id}#segments={json_data})'
st.markdown(link, unsafe_allow_html=True)
wiki_link = '[Review generated segments before submitting!](https://wiki.sponsor.ajay.app/w/Automating_Submissions)'
st.markdown(wiki_link, unsafe_allow_html=True)
if __name__ == '__main__':
main()