Spaces:
Running
Running
import pickle | |
import os | |
from shared import CustomTokens | |
from transformers import AutoTokenizer, AutoConfig, AutoModelForSeq2SeqLM | |
from dataclasses import dataclass, field | |
from typing import Optional | |
class ModelArguments: | |
""" | |
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. | |
""" | |
model_name_or_path: str = field( | |
default='google/t5-v1_1-small', # t5-small | |
metadata={ | |
'help': 'Path to pretrained model or model identifier from huggingface.co/models'} | |
) | |
# config_name: Optional[str] = field( # TODO remove? | |
# default=None, metadata={'help': 'Pretrained config name or path if not the same as model_name'} | |
# ) | |
tokenizer_name: Optional[str] = field( | |
default=None, metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} | |
) | |
cache_dir: Optional[str] = field( | |
default=None, | |
metadata={ | |
'help': 'Where to store the pretrained models downloaded from huggingface.co'}, | |
) | |
use_fast_tokenizer: bool = field( # TODO remove? | |
default=True, | |
metadata={ | |
'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'}, | |
) | |
model_revision: str = field( # TODO remove? | |
default='main', | |
metadata={ | |
'help': 'The specific model version to use (can be a branch name, tag name or commit id).'}, | |
) | |
use_auth_token: bool = field( | |
default=False, | |
metadata={ | |
'help': 'Will use the token generated when running `transformers-cli login` (necessary to use this script ' | |
'with private models).' | |
}, | |
) | |
resize_position_embeddings: Optional[bool] = field( | |
default=None, | |
metadata={ | |
'help': "Whether to automatically resize the position embeddings if `max_source_length` exceeds the model's position embeddings." | |
}, | |
) | |
def get_model(model_args, use_cache=True): | |
name = model_args.model_name_or_path | |
cached_path = f'models/{name}' | |
# Model created after tokenizer: | |
if use_cache and os.path.exists(os.path.join(cached_path, 'pytorch_model.bin')): | |
name = cached_path | |
config = AutoConfig.from_pretrained( | |
name, | |
cache_dir=model_args.cache_dir, | |
revision=model_args.model_revision, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
model = AutoModelForSeq2SeqLM.from_pretrained( | |
name, | |
from_tf='.ckpt' in name, | |
config=config, | |
cache_dir=model_args.cache_dir, | |
revision=model_args.model_revision, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
return model | |
def get_tokenizer(model_args, use_cache=True): | |
name = model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path | |
cached_path = f'models/{name}' | |
if use_cache and os.path.exists(os.path.join(cached_path, 'tokenizer.json')): | |
name = cached_path | |
tokenizer = AutoTokenizer.from_pretrained( | |
name, | |
cache_dir=model_args.cache_dir, | |
use_fast=model_args.use_fast_tokenizer, | |
revision=model_args.model_revision, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
CustomTokens.add_custom_tokens(tokenizer) | |
return tokenizer | |
def get_classifier_vectorizer(classifier_args): | |
with open(os.path.join(classifier_args.classifier_dir, classifier_args.classifier_file), 'rb') as fp: | |
classifier = pickle.load(fp) | |
with open(os.path.join(classifier_args.classifier_dir, classifier_args.vectorizer_file), 'rb') as fp: | |
vectorizer = pickle.load(fp) | |
return classifier, vectorizer | |