Spaces:
Running
Running
""" Finetuning the library models for sequence classification.""" | |
import logging | |
import os | |
import sys | |
from dataclasses import dataclass | |
from typing import Optional | |
import datasets | |
import numpy as np | |
import transformers | |
from transformers import ( | |
DataCollatorWithPadding, | |
EvalPrediction, | |
HfArgumentParser, | |
Trainer, | |
TrainingArguments, | |
set_seed, | |
) | |
from transformers.utils import check_min_version | |
from transformers.utils.versions import require_version | |
from shared import ( | |
CATEGORIES, | |
DatasetArguments, | |
prepare_datasets, | |
load_datasets, | |
CustomTrainingArguments, | |
train_from_checkpoint, | |
get_last_checkpoint | |
) | |
from model import get_model_tokenizer, ModelArguments | |
# Will error if the minimal version of Transformers is not installed. Remove at your own risks. | |
check_min_version('4.17.0') | |
require_version('datasets>=1.8.0', 'To fix: pip install -r requirements.txt') | |
os.environ['WANDB_DISABLED'] = 'true' | |
logger = logging.getLogger(__name__) | |
class ClassifierTrainingArguments(CustomTrainingArguments, TrainingArguments): | |
pass | |
class ClassifierDatasetArguments(DatasetArguments): | |
def __post_init__(self): | |
self.train_file = self.c_train_file | |
self.validation_file = self.c_validation_file | |
self.test_file = self.c_test_file | |
def main(): | |
# See all possible arguments in src/transformers/training_args.py | |
# or by passing the --help flag to this script. | |
# We now keep distinct sets of args, for a cleaner separation of concerns. | |
hf_parser = HfArgumentParser(( | |
ModelArguments, | |
ClassifierDatasetArguments, | |
ClassifierTrainingArguments | |
)) | |
model_args, dataset_args, training_args = hf_parser.parse_args_into_dataclasses() | |
# Setup logging | |
logging.basicConfig( | |
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', | |
datefmt='%m/%d/%Y %H:%M:%S', | |
handlers=[logging.StreamHandler(sys.stdout)], | |
) | |
log_level = training_args.get_process_log_level() | |
logger.setLevel(log_level) | |
datasets.utils.logging.set_verbosity(log_level) | |
transformers.utils.logging.set_verbosity(log_level) | |
transformers.utils.logging.enable_default_handler() | |
transformers.utils.logging.enable_explicit_format() | |
# Log on each process the small summary: | |
logger.warning( | |
f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' | |
+ f'distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}' | |
) | |
logger.info(f'Training/evaluation parameters {training_args}') | |
# Detecting last checkpoint. | |
last_checkpoint = get_last_checkpoint(training_args) | |
# Set seed before initializing model. | |
set_seed(training_args.seed) | |
# Loading a dataset from your local files. | |
# CSV/JSON training and evaluation files are needed. | |
raw_datasets = load_datasets(dataset_args) | |
# See more about loading any type of standard or custom dataset at | |
# https://huggingface.co/docs/datasets/loading_datasets.html. | |
config_args = { | |
'num_labels': len(CATEGORIES), | |
'id2label': {k: str(v).upper() for k, v in enumerate(CATEGORIES)}, | |
'label2id': {str(v).upper(): k for k, v in enumerate(CATEGORIES)} | |
} | |
model, tokenizer = get_model_tokenizer( | |
model_args, training_args, config_args=config_args, model_type='classifier') | |
if training_args.max_seq_length > tokenizer.model_max_length: | |
logger.warning( | |
f'The max_seq_length passed ({training_args.max_seq_length}) is larger than the maximum length for the' | |
f'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' | |
) | |
max_seq_length = min(training_args.max_seq_length, | |
tokenizer.model_max_length) | |
def preprocess_function(examples): | |
# Tokenize the texts | |
result = tokenizer( | |
examples['text'], padding='max_length', max_length=max_seq_length, truncation=True) | |
result['label'] = examples['label'] | |
return result | |
train_dataset, eval_dataset, predict_dataset = prepare_datasets( | |
raw_datasets, dataset_args, training_args, preprocess_function) | |
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a | |
# predictions and label_ids field) and has to return a dictionary string to float. | |
def compute_metrics(p: EvalPrediction): | |
preds = p.predictions[0] if isinstance( | |
p.predictions, tuple) else p.predictions | |
preds = np.argmax(preds, axis=1) | |
return {'accuracy': (preds == p.label_ids).astype(np.float32).mean().item()} | |
# Data collator will default to DataCollatorWithPadding when the tokenizer is passed to Trainer, so we change it if | |
# we already did the padding. | |
if training_args.fp16: | |
data_collator = DataCollatorWithPadding( | |
tokenizer, pad_to_multiple_of=8) | |
else: | |
data_collator = None | |
# Initialize our Trainer | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=train_dataset, | |
eval_dataset=eval_dataset, | |
compute_metrics=compute_metrics, | |
tokenizer=tokenizer, | |
data_collator=data_collator, | |
) | |
# Training | |
train_result = train_from_checkpoint( | |
trainer, last_checkpoint, training_args) | |
metrics = train_result.metrics | |
max_train_samples = ( | |
training_args.max_train_samples if training_args.max_train_samples is not None else len( | |
train_dataset) | |
) | |
metrics['train_samples'] = min(max_train_samples, len(train_dataset)) | |
trainer.save_model() # Saves the tokenizer too for easy upload | |
trainer.log_metrics('train', metrics) | |
trainer.save_metrics('train', metrics) | |
trainer.save_state() | |
kwargs = {'finetuned_from': model_args.model_name_or_path, | |
'tasks': 'text-classification'} | |
if training_args.push_to_hub: | |
trainer.push_to_hub(**kwargs) | |
else: | |
trainer.create_model_card(**kwargs) | |
if __name__ == '__main__': | |
main() | |