Spaces:
Running
Running
Joshua Lochner
commited on
Commit
·
4822df2
1
Parent(s):
ad7fc61
Create basic streamlit application
Browse files
app.py
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from math import ceil, floor
|
3 |
+
import streamlit.components.v1 as components
|
4 |
+
from transformers import (
|
5 |
+
AutoModelForSeq2SeqLM,
|
6 |
+
AutoTokenizer,
|
7 |
+
)
|
8 |
+
import streamlit as st
|
9 |
+
import sys
|
10 |
+
import os
|
11 |
+
import json
|
12 |
+
from urllib.parse import quote
|
13 |
+
|
14 |
+
# Allow direct execution
|
15 |
+
sys.path.insert(0, os.path.join(os.path.dirname(os.path.abspath(__file__)), 'src')) # noqa
|
16 |
+
|
17 |
+
from predict import SegmentationArguments, ClassifierArguments, predict as pred, seconds_to_time # noqa
|
18 |
+
from evaluate import EvaluationArguments
|
19 |
+
from shared import device
|
20 |
+
|
21 |
+
st.set_page_config(
|
22 |
+
page_title="SponsorBlock ML",
|
23 |
+
page_icon="🤖",
|
24 |
+
# layout='wide',
|
25 |
+
# initial_sidebar_state="expanded",
|
26 |
+
menu_items={
|
27 |
+
'Get Help': 'https://github.com/xenova/sponsorblock-ml',
|
28 |
+
'Report a bug': 'https://github.com/xenova/sponsorblock-ml/issues/new/choose',
|
29 |
+
# 'About': "# This is a header. This is an *extremely* cool app!"
|
30 |
+
}
|
31 |
+
)
|
32 |
+
|
33 |
+
MODEL_PATH = 'Xenova/sponsorblock-small_v2022.01.19'
|
34 |
+
|
35 |
+
|
36 |
+
@st.cache(allow_output_mutation=True)
|
37 |
+
def persistdata():
|
38 |
+
return {}
|
39 |
+
|
40 |
+
|
41 |
+
# Faster caching system for predictions (No need to hash)
|
42 |
+
predictions_cache = persistdata()
|
43 |
+
|
44 |
+
|
45 |
+
@st.cache(allow_output_mutation=True)
|
46 |
+
def load_predict():
|
47 |
+
# Use default segmentation and classification arguments
|
48 |
+
evaluation_args = EvaluationArguments(model_path=MODEL_PATH)
|
49 |
+
segmentation_args = SegmentationArguments()
|
50 |
+
classifier_args = ClassifierArguments()
|
51 |
+
|
52 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(evaluation_args.model_path)
|
53 |
+
model.to(device())
|
54 |
+
|
55 |
+
tokenizer = AutoTokenizer.from_pretrained(evaluation_args.model_path)
|
56 |
+
|
57 |
+
def predict_function(video_id):
|
58 |
+
if video_id not in predictions_cache:
|
59 |
+
predictions_cache[video_id] = pred(
|
60 |
+
video_id, model, tokenizer,
|
61 |
+
segmentation_args=segmentation_args,
|
62 |
+
classifier_args=classifier_args
|
63 |
+
)
|
64 |
+
return predictions_cache[video_id]
|
65 |
+
|
66 |
+
return predict_function
|
67 |
+
|
68 |
+
|
69 |
+
CATGEGORY_OPTIONS = {
|
70 |
+
'SPONSOR': 'Sponsor',
|
71 |
+
'SELFPROMO': 'Self/unpaid promo',
|
72 |
+
'INTERACTION': 'Interaction reminder',
|
73 |
+
}
|
74 |
+
|
75 |
+
|
76 |
+
# Load prediction function
|
77 |
+
predict = load_predict()
|
78 |
+
|
79 |
+
|
80 |
+
def main():
|
81 |
+
|
82 |
+
# Display heading and subheading
|
83 |
+
st.write('# SponsorBlock ML')
|
84 |
+
st.write('##### Automatically detect in-video YouTube sponsorships, self/unpaid promotions, and interaction reminders.')
|
85 |
+
|
86 |
+
# Load widgets
|
87 |
+
video_id = st.text_input('Video ID:', placeholder='e.g., axtQvkSpoto')
|
88 |
+
|
89 |
+
categories = st.multiselect('Categories:',
|
90 |
+
CATGEGORY_OPTIONS.keys(),
|
91 |
+
CATGEGORY_OPTIONS.keys(),
|
92 |
+
format_func=CATGEGORY_OPTIONS.get
|
93 |
+
)
|
94 |
+
|
95 |
+
# Hide segments with a confidence lower than
|
96 |
+
confidence_threshold = st.slider(
|
97 |
+
'Confidence Threshold (%):', min_value=0, max_value=100)
|
98 |
+
|
99 |
+
video_id_length = len(video_id)
|
100 |
+
if video_id_length == 0:
|
101 |
+
return
|
102 |
+
|
103 |
+
elif video_id_length != 11:
|
104 |
+
st.exception(ValueError('Invalid YouTube ID'))
|
105 |
+
return
|
106 |
+
|
107 |
+
with st.spinner('Running model...'):
|
108 |
+
predictions = predict(video_id)
|
109 |
+
|
110 |
+
if len(predictions) == 0:
|
111 |
+
st.success('No segments found!')
|
112 |
+
return
|
113 |
+
|
114 |
+
submit_segments = []
|
115 |
+
for index, prediction in enumerate(predictions, start=1):
|
116 |
+
if prediction['category'] not in categories:
|
117 |
+
continue # Skip
|
118 |
+
|
119 |
+
confidence = prediction['probability'] * 100
|
120 |
+
|
121 |
+
if confidence < confidence_threshold:
|
122 |
+
continue
|
123 |
+
|
124 |
+
submit_segments.append({
|
125 |
+
'segment': [prediction['start'], prediction['end']],
|
126 |
+
'category': prediction['category'].lower(),
|
127 |
+
'actionType': 'skip'
|
128 |
+
})
|
129 |
+
start_time = seconds_to_time(prediction['start'])
|
130 |
+
end_time = seconds_to_time(prediction['end'])
|
131 |
+
with st.expander(
|
132 |
+
f"[{prediction['category']}] Prediction #{index} ({start_time} \u2192 {end_time})"
|
133 |
+
):
|
134 |
+
|
135 |
+
url = f"https://www.youtube-nocookie.com/embed/{video_id}?&start={floor(prediction['start'])}&end={ceil(prediction['end'])}"
|
136 |
+
# autoplay=1controls=0&&modestbranding=1&fs=0
|
137 |
+
|
138 |
+
# , width=None, height=None, scrolling=False
|
139 |
+
components.iframe(url, width=670, height=376)
|
140 |
+
|
141 |
+
text = ' '.join(w['text'] for w in prediction['words'])
|
142 |
+
st.write(f"**Times:** {start_time} \u2192 {end_time}")
|
143 |
+
st.write(
|
144 |
+
f"**Category:** {CATGEGORY_OPTIONS[prediction['category']]}")
|
145 |
+
st.write(f"**Confidence:** {confidence:.2f}%")
|
146 |
+
st.write(f'**Text:** "{text}"')
|
147 |
+
|
148 |
+
json_data = quote(json.dumps(submit_segments))
|
149 |
+
link = f'[Submit Segments](https://www.youtube.com/watch?v={video_id}#segments={json_data})'
|
150 |
+
st.markdown(link, unsafe_allow_html=True)
|
151 |
+
|
152 |
+
|
153 |
+
if __name__ == '__main__':
|
154 |
+
main()
|