from shared import ( CustomTokens, DatasetArguments, prepare_datasets, load_datasets, CustomTrainingArguments, get_last_checkpoint, train_from_checkpoint ) from model import ModelArguments import transformers import logging import os import sys from datasets import utils as d_utils from transformers import ( DataCollatorForSeq2Seq, HfArgumentParser, Seq2SeqTrainer, Seq2SeqTrainingArguments, ) from transformers.utils import check_min_version from transformers.utils.versions import require_version from dataclasses import dataclass # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.17.0') require_version('datasets>=1.8.0', 'To fix: pip install -r requirements.txt') os.environ['WANDB_DISABLED'] = 'true' logging.basicConfig() logger = logging.getLogger(__name__) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', handlers=[logging.StreamHandler(sys.stdout)], ) @dataclass class Seq2SeqTrainingArguments(CustomTrainingArguments, Seq2SeqTrainingArguments): pass def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. hf_parser = HfArgumentParser(( ModelArguments, DatasetArguments, Seq2SeqTrainingArguments )) model_args, dataset_args, training_args = hf_parser.parse_args_into_dataclasses() log_level = training_args.get_process_log_level() logger.setLevel(log_level) d_utils.logging.set_verbosity(log_level) transformers.utils.logging.set_verbosity(log_level) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set seed before initializing model. # set_seed(training_args.seed) # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}' ) logger.info(f'Training/evaluation parameters {training_args}') # FP16 https://github.com/huggingface/transformers/issues/9295 # Works: # https://huggingface.co/docs/transformers/model_doc/t5v1.1 # google/t5-v1_1-small # google/t5-v1_1-base # google/t5-v1_1-large # google/t5-v1_1-xl # google/t5-v1_1-xxl # https://huggingface.co/docs/transformers/model_doc/t5 # t5-small # t5-base # t5-large # t5-3b # t5-11b # allenai/led-base-16384 - https://github.com/huggingface/transformers/issues/9810 # Further work: # Multilingual- https://huggingface.co/docs/transformers/model_doc/mt5 # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. raw_datasets = load_datasets(dataset_args) # , cache_dir=model_args.cache_dir # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Detecting last checkpoint. last_checkpoint = get_last_checkpoint(training_args) from model import get_model_tokenizer model, tokenizer = get_model_tokenizer(model_args, training_args) # Preprocessing the datasets. # We need to tokenize inputs and targets. prefix = CustomTokens.EXTRACT_SEGMENTS_PREFIX.value PAD_TOKEN_REPLACE_ID = -100 # https://github.com/huggingface/transformers/issues/5204 def preprocess_function(examples): inputs = examples['text'] targets = examples['extracted'] inputs = [prefix + inp for inp in inputs] model_inputs = tokenizer(inputs, truncation=True) # Setup the tokenizer for targets with tokenizer.as_target_tokenizer(): labels = tokenizer(targets, truncation=True) # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 # when we want to ignore padding in the loss. model_inputs['labels'] = [ [(l if l != tokenizer.pad_token_id else PAD_TOKEN_REPLACE_ID) for l in label] for label in labels['input_ids'] ] return model_inputs train_dataset, eval_dataset, predict_dataset = prepare_datasets( raw_datasets, dataset_args, training_args, preprocess_function) # Data collator data_collator = DataCollatorForSeq2Seq( tokenizer, model=model, label_pad_token_id=PAD_TOKEN_REPLACE_ID, pad_to_multiple_of=8 if training_args.fp16 else None, ) # Done processing datasets # Initialize our Trainer trainer = Seq2SeqTrainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset, tokenizer=tokenizer, data_collator=data_collator, ) # Training train_result = train_from_checkpoint( trainer, last_checkpoint, training_args) metrics = train_result.metrics max_train_samples = training_args.max_train_samples or len( train_dataset) metrics['train_samples'] = min(max_train_samples, len(train_dataset)) trainer.log_metrics('train', metrics) trainer.save_metrics('train', metrics) trainer.save_state() kwargs = {'finetuned_from': model_args.model_name_or_path, 'tasks': 'summarization'} if training_args.push_to_hub: trainer.push_to_hub(**kwargs) else: trainer.create_model_card(**kwargs) if __name__ == '__main__': main()