Spaces:
Runtime error
Runtime error
File size: 7,404 Bytes
7c0eba1 380857f 6e3438c 380857f 6e3438c 380857f 6e3438c 380857f 6e3438c 380857f 6e3438c 380857f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
import spaces
import gradio as gr
import os
import sys
import argparse
import random
import time
from omegaconf import OmegaConf
import torch
import torchvision
from pytorch_lightning import seed_everything
from huggingface_hub import hf_hub_download
from einops import repeat
import torchvision.transforms as transforms
from utils.utils import instantiate_from_config
sys.path.insert(0, "scripts/evaluation")
from scripts.evaluation.funcs import (
batch_ddim_sampling,
load_model_checkpoint,
get_latent_z,
save_videos
)
def download_model():
REPO_ID = 'GraceZhao/DynamiCrafter-CIL-512'
ckpt_dir = './checkpoints/dynamicrafter_512_cil/'
filename_list = ['timenoise.ckpt']
if not os.path.exists(ckpt_dir):
os.makedirs(ckpt_dir)
for filename in filename_list:
local_file = os.path.join(ckpt_dir, filename)
if not os.path.exists(local_file):
hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir=ckpt_dir, force_download=True)
download_model()
ckpt_path='checkpoints/dynamicrafter_512_cil/timenoise.ckpt'
config_file='configs/inference_512_v1.0.yaml'
config = OmegaConf.load(config_file)
model_config = config.pop("model", OmegaConf.create())
model_config['params']['unet_config']['params']['use_checkpoint']=False
model = instantiate_from_config(model_config)
assert os.path.exists(ckpt_path), "Error: checkpoint Not Found!"
model = load_model_checkpoint(model, ckpt_path)
model.eval()
model = model.cuda()
@spaces.GPU(duration=300)
def infer(image, prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123, ddpm_from=1000):
resolution = (320, 512)
save_fps = 8
seed_everything(seed)
transform = transforms.Compose([
transforms.Resize(resolution),
])
torch.cuda.empty_cache()
print('start:', prompt, time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())))
start = time.time()
if steps > 60:
steps = 60
batch_size=1
channels = model.model.diffusion_model.out_channels
frames = model.temporal_length
h, w = resolution[0] // 8, resolution[1] // 8
noise_shape = [batch_size, channels, frames, h, w]
# text cond
with torch.no_grad(), torch.cuda.amp.autocast():
text_emb = model.get_learned_conditioning([prompt])
# img cond
img_tensor = torch.from_numpy(image).permute(2, 0, 1).float().to(model.device)
img_tensor = (img_tensor / 255. - 0.5) * 2
image_tensor_resized = transform(img_tensor) #3,256,256
videos = image_tensor_resized.unsqueeze(0) # bchw
z = get_latent_z(model, videos.unsqueeze(2)) #bc,1,hw
img_tensor_repeat = repeat(z, 'b c t h w -> b c (repeat t) h w', repeat=frames)
cond_images = model.embedder(img_tensor.unsqueeze(0)) ## blc
img_emb = model.image_proj_model(cond_images)
imtext_cond = torch.cat([text_emb, img_emb], dim=1)
fs = torch.tensor([fs], dtype=torch.long, device=model.device)
cond = {"c_crossattn": [imtext_cond], "fs": fs, "c_concat": [img_tensor_repeat]}
## inference
batch_samples = batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=steps, ddim_eta=eta, cfg_scale=cfg_scale, ddpm_from=ddpm_from)
## b,samples,c,t,h,w
video_path = './output.mp4'
save_videos(batch_samples, './', filenames=['output'], fps=save_fps)
return video_path
i2v_examples = [
['prompts/512/7.png', 'Donkeys in traditional attire gallop across a lush green meadow.', 50, 7.5, 1.0, 20, 123,900],
['prompts/512/41.png', 'Rabbits playing in a river.', 50, 7.5, 1.0, 20, 123,900],
['prompts/512/32.png', 'Mountains under the starlight.', 50, 7.5, 1.0, 20, 123,900],
['prompts/512/14.png', 'A duck swimming in the lake.', 50, 7.5, 1.0, 20, 123,900],
['prompts/512/30.png', 'A soldier riding a horse.', 50, 7.5, 1.0, 20, 123,900],
['prompts/512/52.png', 'Fireworks exploding in the sky.', 50, 7.5, 1.0, 20, 123,900],
]
css = """#input_img {max-width: 512px !important} #output_vid {max-width: 512px; max-height: 320px}"""
with gr.Blocks(analytics_enabled=False, css=css) as demo:
gr.Markdown("<div align='center'> <h1> DynamiCrafter-CIL </span> </h1> \
<h2 style='font-weight: 450; font-size: 1rem; margin: 0rem'>\
<a href='https://gracezhao1997.github.io/'>Min Zhao</a>, \
<a href='https://zhuhz22.github.io/'>Hongzhou Zhu</a>, \
<a href='https://xiang-cd.github.io/'>Chendong Xiang</a>, \
<a href='https://scholar.google.com/citations?user=0d80xSIAAAAJ&hl=en'>Kaiwen Zheng</a>, \
<a href='https://zhenxuan00.github.io/'> Chongxuan Li</a>,\
<a href='https://ml.cs.tsinghua.edu.cn/~jun/software.shtml'>Jun Zhu</a>,\
</h2> \
<a style='font-size:18px;color: #000000' href='https://github.com/thu-ml/cond-image-leakage/'>[Github Repo]</a>\
<a style='font-size:18px;color: #000000' href='https://arxiv.org/abs/2406.15735'> [ArXiv] </a>\
<a style='font-size:18px;color: #000000' href='https://cond-image-leak.github.io/'> [Project Page] </a> </div>")
with gr.Tab(label='ImageAnimation_320x512'):
with gr.Column():
with gr.Row():
with gr.Column():
with gr.Row():
i2v_input_image = gr.Image(label="Input Image",elem_id="input_img")
with gr.Row():
i2v_input_text = gr.Text(label='Prompts')
with gr.Row():
i2v_seed = gr.Slider(label='Random Seed', minimum=0, maximum=10000, step=1, value=123)
i2v_eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, label='ETA', value=1.0, elem_id="i2v_eta")
i2v_cfg_scale = gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='CFG Scale', value=7.5, elem_id="i2v_cfg_scale")
with gr.Row():
i2v_steps = gr.Slider(minimum=1, maximum=50, step=1, elem_id="i2v_steps", label="Sampling steps", value=30)
i2v_motion = gr.Slider(minimum=5, maximum=24, step=1, elem_id="i2v_motion", label="FPS", value=20)
i2v_ddpm_from = gr.Slider(minimum=840, maximum=1000, step=1, elem_id="i2v_ddpm_from", label="M", value=900)
i2v_end_btn = gr.Button("Generate")
# with gr.Tab(label='Result'):
with gr.Row():
i2v_output_video = gr.Video(label="Generated Video",elem_id="output_vid",autoplay=True,show_share_button=True)
gr.Examples(examples=i2v_examples,
inputs=[i2v_input_image, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed,i2v_ddpm_from],
outputs=[i2v_output_video],
fn = infer,
cache_examples=True,
)
i2v_end_btn.click(inputs=[i2v_input_image, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed, i2v_ddpm_from],
outputs=[i2v_output_video],
fn = infer
)
demo.queue(max_size=12).launch(show_api=True) |