File size: 7,404 Bytes
7c0eba1
380857f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e3438c
 
 
 
 
 
380857f
 
 
 
 
6e3438c
380857f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e3438c
380857f
 
 
 
 
 
 
 
 
 
 
 
 
6e3438c
 
380857f
 
 
 
 
 
 
6e3438c
380857f
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import spaces
import gradio as gr
import os
import sys
import argparse
import random
import time
from omegaconf import OmegaConf
import torch
import torchvision
from pytorch_lightning import seed_everything
from huggingface_hub import hf_hub_download
from einops import repeat
import torchvision.transforms as transforms
from utils.utils import instantiate_from_config
sys.path.insert(0, "scripts/evaluation")
from scripts.evaluation.funcs import (
    batch_ddim_sampling,
    load_model_checkpoint,
    get_latent_z,
    save_videos
)

def download_model():
    REPO_ID = 'GraceZhao/DynamiCrafter-CIL-512'
    ckpt_dir = './checkpoints/dynamicrafter_512_cil/'
    filename_list = ['timenoise.ckpt']
    if not os.path.exists(ckpt_dir):
        os.makedirs(ckpt_dir)
    for filename in filename_list:
        local_file = os.path.join(ckpt_dir, filename)
        if not os.path.exists(local_file):
            hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir=ckpt_dir, force_download=True)



download_model()
ckpt_path='checkpoints/dynamicrafter_512_cil/timenoise.ckpt'
config_file='configs/inference_512_v1.0.yaml'
config = OmegaConf.load(config_file)
model_config = config.pop("model", OmegaConf.create())
model_config['params']['unet_config']['params']['use_checkpoint']=False   
model = instantiate_from_config(model_config)
assert os.path.exists(ckpt_path), "Error: checkpoint Not Found!"
model = load_model_checkpoint(model, ckpt_path)
model.eval()
model = model.cuda()



@spaces.GPU(duration=300)
def infer(image, prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123, ddpm_from=1000):
    resolution = (320, 512)
    save_fps = 8
    seed_everything(seed)
    transform = transforms.Compose([
        transforms.Resize(resolution),
        ])
    torch.cuda.empty_cache()
    print('start:', prompt, time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())))
    start = time.time()
    if steps > 60:
        steps = 60 

    batch_size=1
    channels = model.model.diffusion_model.out_channels
    frames = model.temporal_length
    h, w = resolution[0] // 8, resolution[1] // 8
    noise_shape = [batch_size, channels, frames, h, w]

    # text cond
    with torch.no_grad(), torch.cuda.amp.autocast():
        text_emb = model.get_learned_conditioning([prompt])
    
        # img cond
        img_tensor = torch.from_numpy(image).permute(2, 0, 1).float().to(model.device)
        img_tensor = (img_tensor / 255. - 0.5) * 2
    
        image_tensor_resized = transform(img_tensor) #3,256,256
        videos = image_tensor_resized.unsqueeze(0) # bchw
        
        z = get_latent_z(model, videos.unsqueeze(2)) #bc,1,hw
        
        img_tensor_repeat = repeat(z, 'b c t h w -> b c (repeat t) h w', repeat=frames)
    
        cond_images = model.embedder(img_tensor.unsqueeze(0)) ## blc
        img_emb = model.image_proj_model(cond_images)
    
        imtext_cond = torch.cat([text_emb, img_emb], dim=1)
    
        fs = torch.tensor([fs], dtype=torch.long, device=model.device)
        cond = {"c_crossattn": [imtext_cond], "fs": fs, "c_concat": [img_tensor_repeat]}
        
        ## inference
        batch_samples = batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=steps, ddim_eta=eta, cfg_scale=cfg_scale, ddpm_from=ddpm_from)
        ## b,samples,c,t,h,w
    
        video_path = './output.mp4'
        save_videos(batch_samples, './', filenames=['output'], fps=save_fps)
    return video_path


i2v_examples = [
    ['prompts/512/7.png', 'Donkeys in traditional attire gallop across a lush green meadow.', 50, 7.5, 1.0, 20, 123,900],
    ['prompts/512/41.png', 'Rabbits playing in a river.', 50, 7.5, 1.0, 20, 123,900],
    ['prompts/512/32.png', 'Mountains under the starlight.', 50, 7.5, 1.0, 20, 123,900],
    ['prompts/512/14.png', 'A duck swimming in the lake.', 50, 7.5, 1.0, 20, 123,900],
    ['prompts/512/30.png', 'A soldier riding a horse.', 50, 7.5, 1.0, 20, 123,900],
    ['prompts/512/52.png', 'Fireworks exploding in the sky.', 50, 7.5, 1.0, 20, 123,900],
]




css = """#input_img {max-width: 512px !important} #output_vid {max-width: 512px; max-height: 320px}"""

with gr.Blocks(analytics_enabled=False, css=css) as demo:
    gr.Markdown("<div align='center'> <h1> DynamiCrafter-CIL </span> </h1> \
                    <h2 style='font-weight: 450; font-size: 1rem; margin: 0rem'>\
                    <a href='https://gracezhao1997.github.io/'>Min Zhao</a>, \
                    <a href='https://zhuhz22.github.io/'>Hongzhou Zhu</a>, \
                    <a href='https://xiang-cd.github.io/'>Chendong Xiang</a>, \
                    <a href='https://scholar.google.com/citations?user=0d80xSIAAAAJ&hl=en'>Kaiwen Zheng</a>, \
                    <a href='https://zhenxuan00.github.io/'> Chongxuan Li</a>,\
                    <a href='https://ml.cs.tsinghua.edu.cn/~jun/software.shtml'>Jun Zhu</a>,\
                </h2> \
                <a style='font-size:18px;color: #000000' href='https://github.com/thu-ml/cond-image-leakage/'>[Github Repo]</a>\
                    <a style='font-size:18px;color: #000000' href='https://arxiv.org/abs/2406.15735'> [ArXiv] </a>\
                    <a style='font-size:18px;color: #000000' href='https://cond-image-leak.github.io/'> [Project Page] </a> </div>")
    
    with gr.Tab(label='ImageAnimation_320x512'):
        with gr.Column():
            with gr.Row():
                with gr.Column():
                    with gr.Row():
                        i2v_input_image = gr.Image(label="Input Image",elem_id="input_img")
                    with gr.Row():
                        i2v_input_text = gr.Text(label='Prompts')
                    with gr.Row():
                        i2v_seed = gr.Slider(label='Random Seed', minimum=0, maximum=10000, step=1, value=123)
                        i2v_eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, label='ETA', value=1.0, elem_id="i2v_eta")
                        i2v_cfg_scale = gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='CFG Scale', value=7.5, elem_id="i2v_cfg_scale")
                    with gr.Row():
                        i2v_steps = gr.Slider(minimum=1, maximum=50, step=1, elem_id="i2v_steps", label="Sampling steps", value=30)
                        i2v_motion = gr.Slider(minimum=5, maximum=24, step=1, elem_id="i2v_motion", label="FPS", value=20)
                        i2v_ddpm_from = gr.Slider(minimum=840, maximum=1000, step=1, elem_id="i2v_ddpm_from", label="M", value=900)
                        
                    i2v_end_btn = gr.Button("Generate")
                # with gr.Tab(label='Result'):
                with gr.Row():
                    i2v_output_video = gr.Video(label="Generated Video",elem_id="output_vid",autoplay=True,show_share_button=True)

            gr.Examples(examples=i2v_examples,
                        inputs=[i2v_input_image, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed,i2v_ddpm_from],
                        outputs=[i2v_output_video],
                        fn = infer,
                        cache_examples=True,
            )
        i2v_end_btn.click(inputs=[i2v_input_image, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed, i2v_ddpm_from],
                        outputs=[i2v_output_video],
                        fn = infer
        )

demo.queue(max_size=12).launch(show_api=True)