Spaces:
Configuration error
Configuration error
File size: 16,012 Bytes
5602c9a a043943 5602c9a 33f757a 5602c9a a043943 5602c9a 33f757a 5602c9a a043943 5602c9a 33f757a 5602c9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
import os
from glob import glob
import copy
from typing import Optional,Dict
from tqdm.auto import tqdm
from omegaconf import OmegaConf
import click
import torch
import torch.utils.data
import torch.utils.checkpoint
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DDIMInverseScheduler,
)
from diffusers.utils.import_utils import is_xformers_available
from transformers import AutoTokenizer, CLIPTextModel
from einops import rearrange
from video_diffusion.models.unet_3d_condition import UNetPseudo3DConditionModel
#from video_diffusion.models.unet import UNet3DConditionModel
from video_diffusion.data.dataset import ImageSequenceDataset
from video_diffusion.common.util import get_time_string, get_function_args
from video_diffusion.common.logger import get_logger_config_path
from video_diffusion.common.image_util import log_train_samples,log_infer_samples,save_tensor_images_and_video,visualize_check_downsample_keypoints,sample_trajectories,save_videos_grid,sample_trajectories_new
from video_diffusion.common.instantiate_from_config import instantiate_from_config
from video_diffusion.pipelines.validation_loop import SampleLogger
# logger = get_logger(__name__)
from video_diffusion.models.controlnet3d import ControlNetModel
from annotator.util import get_control, HWC3
import numpy as np
import imageio
import torchvision
import cv2
from torchvision import transforms
from PIL import Image
import time
def collate_fn(examples):
"""Concat a batch of sampled image in dataloader
"""
batch = {
"prompt_ids": torch.cat([example["prompt_ids"] for example in examples], dim=0),
"images": torch.stack([example["images"] for example in examples]),
"masks": torch.cat([example["masks"] for example in examples]),
"layouts": torch.cat([example["layouts"] for example in examples]),
}
return batch
def test(
config: str,
pretrained_model_path: str,
dataset_config: Dict,
logdir: str = None,
editing_config: Optional[Dict] = None,
control_config: Optional[Dict] = None,
test_pipeline_config: Optional[Dict] = None,
gradient_accumulation_steps: int = 1,
seed: Optional[int] = None,
mixed_precision: Optional[str] = "fp16",
batch_size: int = 1,
model_config: dict={},
cluster_inversion_feature: bool=False,
**kwargs
):
args = get_function_args()
time_string = get_time_string()
if logdir is None:
logdir = config.replace('config', 'result').replace('.yml', '').replace('.yaml', '')
# logdir += f"_{time_string}"
accelerator = Accelerator(
gradient_accumulation_steps=gradient_accumulation_steps,
mixed_precision=mixed_precision,
)
if accelerator.is_main_process:
os.makedirs(logdir, exist_ok=True)
OmegaConf.save(args, os.path.join(logdir, "config.yml"))
logger = get_logger_config_path(logdir)
if seed is not None:
set_seed(seed)
# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained(
pretrained_model_path,
subfolder="tokenizer",
use_fast=False,
)
# Load models and create wrapper for stable diffusion
text_encoder = CLIPTextModel.from_pretrained(
pretrained_model_path,
subfolder="text_encoder",
)
vae = AutoencoderKL.from_pretrained(
pretrained_model_path,
subfolder="vae",
)
unet = UNetPseudo3DConditionModel.from_2d_model(
os.path.join(pretrained_model_path, "unet"), model_config=model_config
)
pretrained_controlnet_path = control_config['pretrained_controlnet_path']
controlnet= ControlNetModel.from_pretrained_2d(pretrained_controlnet_path)
if 'target' not in test_pipeline_config:
test_pipeline_config['target'] = 'video_diffusion.pipelines.stable_diffusion.SpatioTemporalStableDiffusionPipeline'
pipeline = instantiate_from_config(
test_pipeline_config,
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
controlnet=controlnet,
scheduler=DDIMScheduler.from_pretrained(
pretrained_model_path,
subfolder="scheduler",
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
),
inverse_scheduler=DDIMInverseScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler"),
logdir=logdir,
)
pipeline.scheduler.set_timesteps(editing_config['num_inference_steps'])
# pipeline.set_progress_bar_config(disable=True)
#pipeline.print_pipeline(logger)
if is_xformers_available():
try:
pipeline.enable_xformers_memory_efficient_attention()
except Exception as e:
logger.warning(
"Could not enable memory efficient attention. Make sure xformers is installed"
f" correctly and a GPU is available: {e}"
)
vae.requires_grad_(False)
unet.requires_grad_(False)
text_encoder.requires_grad_(False)
controlnet.requires_grad_(False)
print("org prompt input",dataset_config["prompt"])
print("edit prompt input",editing_config["editing_prompts"])
prompt_ids = tokenizer(
dataset_config["prompt"],
truncation=True,
padding="max_length",
max_length=tokenizer.model_max_length,
return_tensors="pt",
).input_ids
video_dataset = ImageSequenceDataset(**dataset_config, prompt_ids=prompt_ids)
train_dataloader = torch.utils.data.DataLoader(
video_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=4,
collate_fn=collate_fn,
)
train_sample_save_path = os.path.join(logdir, "infer_samples")
log_infer_samples(save_path=train_sample_save_path, infer_dataloader=train_dataloader)
unet, controlnet, train_dataloader = accelerator.prepare(
unet, controlnet, train_dataloader)
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
print('use fp16')
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Move text_encode and vae to gpu.
# For mixed precision training we cast the text_encoder and vae weights to half-precision
# These models are only used for inference, keeping weights in full precision is not required.
vae.to(accelerator.device, dtype=weight_dtype)
text_encoder.to(accelerator.device, dtype=weight_dtype)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
accelerator.init_trackers("video") # , config=vars(args))
logger.info("***** wait to fix the logger path *****")
if editing_config is not None and accelerator.is_main_process:
# validation_sample_logger = P2pSampleLogger(**editing_config, logdir=logdir, source_prompt=dataset_config['prompt'])
validation_sample_logger = SampleLogger(**editing_config, logdir=logdir)
def make_data_yielder(dataloader):
while True:
for batch in dataloader:
yield batch
accelerator.wait_for_everyone()
train_data_yielder = make_data_yielder(train_dataloader)
batch = next(train_data_yielder)
# if editing_config.get('use_invertion_latents', False):
# Precompute the latents for this video to align the initial latents in training and test
assert batch["images"].shape[0] == 1, "Only support, overfiting on a single video"
# we only inference for latents, no training
######precompute control condition##########
images = batch["images"] # b c f h w, b=1
b, c, f, height ,width = images.shape
images = (images+1.0)*127.5 # norm back
## save source video
save_videos_grid(batch["images"].cpu(),os.path.join(logdir,"source_video.mp4"),rescale=True)
images = rearrange(images.to(dtype=torch.float32), "b c f h w -> (b f) h w c")
control_type = control_config['control_type']
print('control_type',control_type)
apply_control = get_control(control_type)
control = []
for i in images:
img = i.cpu().numpy()
i = img.astype(np.uint8)
if control_type == 'canny':
detected_map = apply_control(i, control_config['low_threshold'], control_config['high_threshold'])
elif control_type == 'openpose':
detected_map = apply_control(i, hand=control_config['hand'], face=control_config['face'])
# keypoint.append(candidate_canvas_dict['candidate'])
elif control_type == 'dwpose':
detected_map = apply_control(i, hand=control_config['hand'], face=control_config['face'])
elif control_type == 'depth_zoe':
detected_map = apply_control(i)
elif control_type == 'depth':
detected_map,_ = apply_control(i)
elif control_type == 'hed' or control_type == 'seg':
detected_map = apply_control(i)
elif control_type == 'scribble':
i = i
detected_map = np.zeros_like(i, dtype=np.uint8)
detected_map[np.min(i, axis=2) < control_config.value] = 255
elif control_type == 'normal':
_, detected_map = apply_control(i, bg_th=control_config['bg_threshold'])
elif control_type == 'mlsd':
detected_map = apply_control(i, control_config['value_threshold'], control_config['distance_threshold'])
else:
raise ValueError(control_type)
control.append(HWC3(detected_map))
control = np.stack(control)
control = np.array(control).astype(np.float32) / 255.0
control = torch.from_numpy(control).to(accelerator.device)
control = control.unsqueeze(0) #[f h w c] -> [b f h w c ]
control = rearrange(control, "b f h w c -> b c f h w")
control = control.to(weight_dtype)
batch['control'] = control
control_save = control.cpu().float()
print("save control")
control_save_dir = os.path.join(logdir, "control")
save_tensor_images_and_video(control_save, control_save_dir)
# compute optical flows and sample trajectories
trajectories = sample_trajectories_new(os.path.join(logdir, "source_video.mp4"),accelerator.device,height,width)
torch.cuda.empty_cache()
for k in trajectories.keys():
trajectories[k] = trajectories[k].to(accelerator.device)
downsample_height, downsample_width = height//8, width//8
# The externally specified flatten_res
flatten_res = editing_config['flatten_res'] # This could be [1] or [1, 2], etc.
# Generate the corresponding resolutions
flatten_resolutions = [
(downsample_height // factor, downsample_width // factor)
for factor in flatten_res
]
# Update the editing_config dictionary
editing_config['flatten_res'] = flatten_resolutions
print('flatten res:',editing_config['flatten_res'])
all_start = time.time()
###ddim inversion scheduler end
if editing_config['use_freeu']:
from video_diffusion.prompt_attention.free_lunch_utils import apply_freeu
apply_freeu(pipeline, b1=1.2, b2=1.5, s1=1.0, s2=1.0)
if editing_config.get('use_invertion_latents', False):
# Precompute the latents for this video to align the initial latents in training and test
logger.info("use inversion latents")
assert batch["images"].shape[0] == 1, "Only support, overfiting on a single video"
latents, attn_inversion_dict = pipeline.prepare_latents_ddim_inverted(
image=rearrange(batch["images"].to(dtype=weight_dtype), "b c f h w -> (b f) c h w"),
batch_size = 1,
source_prompt = dataset_config.prompt,
do_classifier_free_guidance=True,
control=batch['control'], controlnet_conditioning_scale=control_config['controlnet_conditioning_scale'],
use_pnp=editing_config['use_pnp'],
cluster_inversion_feature=editing_config.get('cluster_inversion_feature', False),
trajs=trajectories,
old_qk=editing_config["old_qk"],
flatten_res=editing_config['flatten_res']
)
batch['ddim_init_latents'] = latents
print("use inversion latents")
else:
batch['ddim_init_latents'] = None
########### end of code for ddim inversion###########
vae.eval()
text_encoder.eval()
unet.eval()
controlnet.eval()
# with accelerator.accumulate(unet):
# Convert images to latent space
images = batch["images"].to(dtype=weight_dtype)
images = rearrange(images, "b c f h w -> (b f) c h w")
masks = batch["masks"].to(dtype=weight_dtype)
b = batch_size
masks = rearrange(masks, f"c f h w -> {b} c f h w")
layouts = batch["layouts"].to(dtype=weight_dtype) #layouts = f s c h w
if accelerator.is_main_process:
if validation_sample_logger is not None:
unet.eval()
validation_sample_logger.log_sample_images(
image=images, # torch.Size([8, 3, 512, 512])
masks = masks,
layouts = layouts,
pipeline=pipeline,
device=accelerator.device,
step=0,
latents = batch['ddim_init_latents'],
control = batch['control'],
controlnet_conditioning_scale = control_config['controlnet_conditioning_scale'],
blending_percentage = editing_config["blending_percentage"],
trajs=trajectories,
flatten_res = editing_config['flatten_res'],
negative_prompt=[dataset_config['negative_promot']],
source_prompt=dataset_config.prompt,
inject_step=editing_config["inject_step"],
old_qk=editing_config["old_qk"],
use_pnp = editing_config['use_pnp'],
cluster_inversion_feature = editing_config.get('cluster_inversion_feature', False),
vis_cross_attn = editing_config.get('vis_cross_attn', False),
attn_inversion_dict = attn_inversion_dict,
)
accelerator.end_training()
save_path = os.path.join(logdir,'sample/step_0.gif')
print('save_path',save_path)
return save_path
@click.command()
@click.option("--config", type=str, default="config/shape/exp_config/single_object/tennis_3.yaml")
def run(config):
Omegadict = OmegaConf.load(config)
if 'unet' in os.listdir(Omegadict['pretrained_model_path']):
test(config=config, **Omegadict)
else:
# Go through all ckpt if possible
checkpoint_list = sorted(glob(os.path.join(Omegadict['pretrained_model_path'], 'checkpoint_*')))
print('checkpoint to evaluate:')
for checkpoint in checkpoint_list:
epoch = checkpoint.split('_')[-1]
for checkpoint in tqdm(checkpoint_list):
epoch = checkpoint.split('_')[-1]
if 'pretrained_epoch_list' not in Omegadict or int(epoch) in Omegadict['pretrained_epoch_list']:
print(f'Evaluate {checkpoint}')
# Update saving dir and ckpt
Omegadict_checkpoint = copy.deepcopy(Omegadict)
Omegadict_checkpoint['pretrained_model_path'] = checkpoint
if 'logdir' not in Omegadict_checkpoint:
logdir = config.replace('config', 'result').replace('.yml', '').replace('.yaml', '')
logdir += f"/{os.path.basename(checkpoint)}"
Omegadict_checkpoint['logdir'] = logdir
print(f'Saving at {logdir}')
test(config=config, **Omegadict_checkpoint)
if __name__ == "__main__":
run()
|