Spaces:
Runtime error
Runtime error
File size: 6,703 Bytes
3edcab0 6671f1e 3edcab0 7b36c3a 3edcab0 7b36c3a 3edcab0 7b36c3a 72fb43a 7b36c3a 3edcab0 72fb43a 7b36c3a 3edcab0 7b36c3a 3edcab0 7b36c3a 3edcab0 72fb43a 7b36c3a 3edcab0 7b36c3a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
import gradio as gr
from gradio_client import Client
from huggingface_hub import InferenceClient
import random
ss_client = Client("https://xilixmeaty40-testing.hf.space/")
with open("models.txt", "r") as file:
models = file.read().splitlines()
clients = [InferenceClient(model) for model in models]
VERBOSE = False
def load_models(inp):
if VERBOSE:
print(type(inp))
print(inp)
print(models[inp])
return gr.update(label=models[inp])
def format_prompt(message, history, cust_p):
prompt = ""
if history:
for user_prompt, bot_response in history:
prompt += f"<start_of_turn>user{user_prompt}<end_of_turn>"
prompt += f"<start_of_turn>model{bot_response}<end_of_turn>"
if VERBOSE:
print(prompt)
prompt += cust_p.replace("USER_INPUT", message)
return prompt
def chat_inf(system_prompt, prompt, history, memory, client_choice, seed, temp, tokens, top_p, rep_p, chat_mem, cust_p):
hist_len = 0
client = clients[int(client_choice) - 1]
if not history:
history = []
if not memory:
memory = []
if memory:
for ea in memory[0 - chat_mem:]:
hist_len += len(str(ea))
in_len = len(system_prompt + prompt) + hist_len
if (in_len + tokens) > 8000:
history.append((prompt, "Wait, that's too many tokens, please reduce the 'Chat Memory' value, or reduce the 'Max new tokens' value"))
yield history, memory
else:
generate_kwargs = dict(
temperature=temp,
max_new_tokens=tokens,
top_p=top_p,
repetition_penalty=rep_p,
do_sample=True,
seed=seed,
)
if system_prompt:
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", memory[0 - chat_mem:], cust_p)
else:
formatted_prompt = format_prompt(prompt, memory[0 - chat_mem:], cust_p)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
output = ""
for response in stream:
output += response.token.text
yield [(prompt, output)], memory
history.append((prompt, output))
memory.append((prompt, output))
yield history, memory
def get_screenshot(chat: list, height=5000, width=600, chatblock=[], theme="light", wait=3000, header=True):
tog = 0
if chatblock:
tog = 3
result = ss_client.predict(str(chat), height, width, chatblock, header, theme, wait, api_name="/run_script")
out = f'https://xilixmeaty40-testing.hf.space/file={result[tog]}'
return out
def clear_fn():
return None, None, None, None
rand_val = random.randint(1, 1111111111111111)
def check_rand(inp, val):
if inp:
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=random.randint(1, 1111111111111111))
else:
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=int(val))
with gr.Blocks() as app:
memory = gr.State()
gr.HTML("""<center><h1 style='font-size:xx-large;'>Google Gemma Models</h1><br><h3>running on Huggingface Inference Client</h3><br><h7>EXPERIMENTAL""")
chat_b = gr.Chatbot(height=500)
with gr.Group():
with gr.Row():
with gr.Column(scale=3):
inp = gr.Textbox(label="Prompt")
sys_inp = gr.Textbox(label="System Prompt (optional)")
with gr.Accordion("Prompt Format", open=False):
custom_prompt = gr.Textbox(label="Modify Prompt Format", info="For testing purposes. 'USER_INPUT' is where 'SYSTEM_PROMPT, PROMPT' will be placed", lines=3, value="<start_of_turn>userUSER_INPUT<end_of_turn><start_of_turn>model")
with gr.Row():
with gr.Column(scale=2):
btn = gr.Button("Chat")
with gr.Column(scale=1):
with gr.Group():
stop_btn = gr.Button("Stop")
clear_btn = gr.Button("Clear")
client_choice = gr.Dropdown(label="Models", type='index', choices=[c for c in models], value=models[0], interactive=True)
with gr.Column(scale=1):
with gr.Group():
rand = gr.Checkbox(label="Random Seed", value=True)
seed = gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, step=1, value=rand_val)
tokens = gr.Slider(label="Max new tokens", value=300000, minimum=0, maximum=800000, step=64, interactive=True, visible=True, info="The maximum number of tokens")
temp = gr.Slider(label="Temperature", step=0.01, minimum=0.01, maximum=1.0, value=0.49)
top_p = gr.Slider(label="Top-P", step=0.01, minimum=0.01, maximum=1.0, value=0.49)
rep_p = gr.Slider(label="Repetition Penalty", step=0.01, minimum=0.1, maximum=2.0, value=0.99)
chat_mem = gr.Number(label="Chat Memory", info="Number of previous chats to retain", value=4)
with gr.Accordion(label="Screenshot", open=False):
with gr.Row():
with gr.Column(scale=3):
im_btn = gr.Button("Screenshot")
img = gr.Image(type='filepath')
with gr.Column(scale=1):
with gr.Row():
im_height = gr.Number(label="Height", value=5000)
im_width = gr.Number(label="Width", value=500)
wait_time = gr.Number(label="Wait Time", value=3000)
theme = gr.Radio(label="Theme", choices=["light", "dark"], value="light")
chatblock = gr.Dropdown(label="Chatblocks", info="Choose specific blocks of chat", choices=[c for c in range(1, 40)], multiselect=True)
client_choice.change(load_models, client_choice, [chat_b])
app.load(load_models, client_choice, [chat_b])
im_go = im_btn.click(get_screenshot, [chat_b, im_height, im_width, chatblock, theme, wait_time], img)
chat_sub = inp.submit(check_rand, [rand, seed], seed).then(chat_inf, [sys_inp, inp, chat_b, memory, client_choice, seed, temp, tokens, top_p, rep_p, chat_mem, custom_prompt], [chat_b, memory])
go = btn.click(check_rand, [rand, seed], seed).then(chat_inf, [sys_inp, inp, chat_b, memory, client_choice, seed, temp, tokens, top_p, rep_p, chat_mem, custom_prompt], [chat_b, memory])
stop_btn.click(None, None, None, cancels=[go, im_go, chat_sub])
clear_btn.click(clear_fn, None, [inp, sys_inp, chat_b, memory])
app.queue(default_concurrency_limit=10).launch()
|