Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
from PIL import Image | |
from transformers import AutoProcessor, AutoModelForPreTraining | |
import os | |
# PaliGemma settings | |
access_token = os.getenv('HF_TOKEN') | |
processor = AutoProcessor.from_pretrained("google/paligemma-3b-pt-896", token=access_token) | |
model = AutoModelForPreTraining.from_pretrained("google/paligemma-3b-pt-896", token=access_token) | |
def response_request(image,prompt): | |
inputs = processor(prompt, image, return_tensors="pt") | |
output = model.generate(**inputs, max_new_tokens=100, do_sample=False) | |
response = processor.decode(output[0], skip_special_tokens=True)[len(prompt):] | |
return response | |
# Interface | |
iface = gr.Interface( | |
fn=response_request, | |
inputs=[ | |
gr.Image(type="pil", label="Upload Image"), | |
gr.Textbox(label="Prompt") | |
], | |
outputs=[ | |
gr.Textbox(label="Response") | |
], | |
title="PaliGemma (google/paligemma-3b-pt-896)" | |
) | |
iface.launch() | |