Spaces:
Running
on
A10G
Running
on
A10G
import os | |
import cv2 | |
import gradio as gr | |
import torch | |
from basicsr.archs.srvgg_arch import SRVGGNetCompact | |
from gfpgan.utils import GFPGANer | |
from realesrgan.utils import RealESRGANer | |
os.system("pip freeze") | |
# download weights | |
if not os.path.exists('realesr-general-x4v3.pth'): | |
os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P .") | |
if not os.path.exists('GFPGANv1.2.pth'): | |
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth -P .") | |
if not os.path.exists('GFPGANv1.3.pth'): | |
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P .") | |
if not os.path.exists('GFPGANv1.4.pth'): | |
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P .") | |
if not os.path.exists('RestoreFormer.pth'): | |
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth -P .") | |
if not os.path.exists('CodeFormer.pth'): | |
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/CodeFormer.pth -P .") | |
torch.hub.download_url_to_file( | |
'https://upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Abraham_Lincoln_O-77_matte_collodion_print.jpg/1024px-Abraham_Lincoln_O-77_matte_collodion_print.jpg', | |
'lincoln.jpg') | |
torch.hub.download_url_to_file( | |
'https://user-images.githubusercontent.com/17445847/187400315-87a90ac9-d231-45d6-b377-38702bd1838f.jpg', | |
'AI-generate.jpg') | |
torch.hub.download_url_to_file( | |
'https://user-images.githubusercontent.com/17445847/187400981-8a58f7a4-ef61-42d9-af80-bc6234cef860.jpg', | |
'Blake_Lively.jpg') | |
torch.hub.download_url_to_file( | |
'https://user-images.githubusercontent.com/17445847/187401133-8a3bf269-5b4d-4432-b2f0-6d26ee1d3307.png', | |
'10045.png') | |
# background enhancer with RealESRGAN | |
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu') | |
model_path = 'realesr-general-x4v3.pth' | |
half = True if torch.cuda.is_available() else False | |
upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half) | |
os.makedirs('output', exist_ok=True) | |
# def inference(img, version, scale, weight): | |
def inference(img, version, scale): | |
# weight /= 100 | |
print(img, version, scale) | |
if scale > 4: | |
scale = 4 # avoid too large scale value | |
try: | |
extension = os.path.splitext(os.path.basename(str(img)))[1] | |
img = cv2.imread(img, cv2.IMREAD_UNCHANGED) | |
if len(img.shape) == 3 and img.shape[2] == 4: | |
img_mode = 'RGBA' | |
elif len(img.shape) == 2: # for gray inputs | |
img_mode = None | |
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) | |
else: | |
img_mode = None | |
h, w = img.shape[0:2] | |
if h > 3500 or w > 3500: | |
print('too large size') | |
return None, None | |
if h < 300: | |
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4) | |
if version == 'v1.2': | |
face_enhancer = GFPGANer( | |
model_path='GFPGANv1.2.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler) | |
elif version == 'v1.3': | |
face_enhancer = GFPGANer( | |
model_path='GFPGANv1.3.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler) | |
elif version == 'v1.4': | |
face_enhancer = GFPGANer( | |
model_path='GFPGANv1.4.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler) | |
elif version == 'RestoreFormer': | |
face_enhancer = GFPGANer( | |
model_path='RestoreFormer.pth', upscale=2, arch='RestoreFormer', channel_multiplier=2, bg_upsampler=upsampler) | |
# elif version == 'CodeFormer': | |
# face_enhancer = GFPGANer( | |
# model_path='CodeFormer.pth', upscale=2, arch='CodeFormer', channel_multiplier=2, bg_upsampler=upsampler) | |
try: | |
# _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True, weight=weight) | |
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True) | |
except RuntimeError as error: | |
print('Error', error) | |
try: | |
if scale != 2: | |
interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4 | |
h, w = img.shape[0:2] | |
output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation) | |
except Exception as error: | |
print('wrong scale input.', error) | |
if img_mode == 'RGBA': # RGBA images should be saved in png format | |
extension = 'png' | |
else: | |
extension = 'jpg' | |
save_path = f'output/out.{extension}' | |
cv2.imwrite(save_path, output) | |
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB) | |
return output, save_path | |
except Exception as error: | |
print('global exception', error) | |
return None, None | |
title = "GFPGAN: Practical Face Restoration Algorithm" | |
description = r"""Gradio demo for <a href='https://github.com/TencentARC/GFPGAN' target='_blank'><b>GFPGAN: Towards Real-World Blind Face Restoration with Generative Facial Prior</b></a>.<br> | |
It can be used to restore your **old photos** or improve **AI-generated faces**.<br> | |
To use it, simply upload your image.<br> | |
If GFPGAN is helpful, please help to β the <a href='https://github.com/TencentARC/GFPGAN' target='_blank'>Github Repo</a> and recommend it to your friends π | |
""" | |
article = r""" | |
[![download](https://img.shields.io/github/downloads/TencentARC/GFPGAN/total.svg)](https://github.com/TencentARC/GFPGAN/releases) | |
[![GitHub Stars](https://img.shields.io/github/stars/TencentARC/GFPGAN?style=social)](https://github.com/TencentARC/GFPGAN) | |
[![arXiv](https://img.shields.io/badge/arXiv-Paper-<COLOR>.svg)](https://arxiv.org/abs/2101.04061) | |
If you have any question, please email π§ `xintao.wang@outlook.com` or `xintaowang@tencent.com`. | |
<center><img src='https://visitor-badge.glitch.me/badge?page_id=akhaliq_GFPGAN' alt='visitor badge'></center> | |
<center><img src='https://visitor-badge.glitch.me/badge?page_id=Gradio_Xintao_GFPGAN' alt='visitor badge'></center> | |
""" | |
demo = gr.Interface( | |
inference, [ | |
gr.inputs.Image(type="filepath", label="Input"), | |
# gr.inputs.Radio(['v1.2', 'v1.3', 'v1.4', 'RestoreFormer', 'CodeFormer'], type="value", default='v1.4', label='version'), | |
gr.inputs.Radio(['v1.2', 'v1.3', 'v1.4', 'RestoreFormer'], type="value", default='v1.4', label='version'), | |
gr.inputs.Number(label="Rescaling factor", default=2), | |
# gr.Slider(0, 100, label='Weight, only for CodeFormer. 0 for better quality, 100 for better identity', default=50) | |
], [ | |
gr.outputs.Image(type="numpy", label="Output (The whole image)"), | |
gr.outputs.File(label="Download the output image") | |
], | |
title=title, | |
description=description, | |
article=article, | |
# examples=[['AI-generate.jpg', 'v1.4', 2, 50], ['lincoln.jpg', 'v1.4', 2, 50], ['Blake_Lively.jpg', 'v1.4', 2, 50], | |
# ['10045.png', 'v1.4', 2, 50]]).launch() | |
examples=[['AI-generate.jpg', 'v1.4', 2], ['lincoln.jpg', 'v1.4', 2], ['Blake_Lively.jpg', 'v1.4', 2], | |
['10045.png', 'v1.4', 2]]) | |
demo.queue(concurrency_count=1) | |
demo.launch() | |