Spaces:
Running
on
A10G
Running
on
A10G
Xintao
commited on
Commit
·
e6ac7d7
1
Parent(s):
65c0e3c
clean version
Browse files- README.md +3 -3
- app.py +64 -30
- gfpgan_utils.py +0 -119
- gfpganv1_clean_arch.py +0 -325
- realesrgan_utils.py +0 -281
- srvgg_arch.py +0 -67
- stylegan2_clean_arch.py +0 -369
README.md
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
---
|
2 |
title: GFPGAN
|
3 |
-
emoji:
|
4 |
colorFrom: yellow
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 3.1.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
|
|
1 |
---
|
2 |
title: GFPGAN
|
3 |
+
emoji: 😁
|
4 |
colorFrom: yellow
|
5 |
+
colorTo: green
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.1.8
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
app.py
CHANGED
@@ -3,76 +3,110 @@ import os
|
|
3 |
import cv2
|
4 |
import gradio as gr
|
5 |
import torch
|
|
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
os.system("
|
11 |
-
os.system(
|
12 |
-
"wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P ./weights")
|
13 |
-
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth -P ./weights")
|
14 |
-
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P ./weights")
|
15 |
|
16 |
torch.hub.download_url_to_file(
|
17 |
'https://upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Abraham_Lincoln_O-77_matte_collodion_print.jpg/1024px-Abraham_Lincoln_O-77_matte_collodion_print.jpg',
|
18 |
'lincoln.jpg')
|
19 |
-
torch.hub.download_url_to_file('https://upload.wikimedia.org/wikipedia/commons/5/50/Albert_Einstein_%28Nobel%29.png',
|
20 |
-
'einstein.png')
|
21 |
torch.hub.download_url_to_file(
|
22 |
-
'https://
|
23 |
-
'
|
24 |
torch.hub.download_url_to_file(
|
25 |
-
'https://
|
26 |
-
'
|
27 |
torch.hub.download_url_to_file(
|
28 |
-
'https://
|
29 |
-
'
|
30 |
|
31 |
# determine models according to model names
|
|
|
|
|
|
|
32 |
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
|
33 |
netscale = 4
|
34 |
model_path = os.path.join('weights', 'realesr-general-x4v3.pth')
|
35 |
-
|
36 |
-
# restorer
|
37 |
half = True if torch.cuda.is_available() else False
|
38 |
upsampler = RealESRGANer(scale=netscale, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)
|
39 |
|
40 |
# Use GFPGAN for face enhancement
|
41 |
-
|
42 |
-
|
43 |
-
face_enhancer = GFPGANer(
|
44 |
model_path='weights/GFPGANv1.3.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
|
|
|
|
|
45 |
os.makedirs('output', exist_ok=True)
|
46 |
|
47 |
-
|
48 |
-
|
49 |
img = cv2.imread(img, cv2.IMREAD_UNCHANGED)
|
|
|
|
|
|
|
|
|
50 |
|
51 |
h, w = img.shape[0:2]
|
52 |
if h < 400:
|
53 |
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
|
54 |
|
|
|
|
|
|
|
|
|
55 |
try:
|
56 |
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
|
57 |
except RuntimeError as error:
|
58 |
print('Error', error)
|
59 |
print('If you encounter CUDA out of memory, try to set --tile with a smaller number.')
|
60 |
else:
|
|
|
61 |
extension = 'png'
|
62 |
if scale != 2:
|
|
|
63 |
h, w = img.shape[0:2]
|
64 |
-
output = cv2.resize((int(w * scale /2), int(h * scale/2)), interpolation=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
|
66 |
-
return output
|
67 |
|
68 |
|
69 |
title = "GFPGAN: Practical Face Restoration Algorithm"
|
70 |
-
description = "
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
gr.Interface(
|
73 |
-
inference,
|
74 |
-
gr.
|
|
|
|
|
|
|
|
|
75 |
title=title,
|
76 |
description=description,
|
77 |
article=article,
|
78 |
-
examples=[['
|
|
|
3 |
import cv2
|
4 |
import gradio as gr
|
5 |
import torch
|
6 |
+
from basicsr.archs.srvgg_arch import SRVGGNetCompact
|
7 |
+
from gfpgan.utils import GFPGANer
|
8 |
+
from realesrgan.utils import RealESRGANer
|
9 |
|
10 |
+
# os.system("pip freeze")
|
11 |
+
# os.system(
|
12 |
+
# "wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P ./weights")
|
13 |
+
# os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth -P ./weights")
|
14 |
+
# os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P ./weights")
|
|
|
|
|
|
|
15 |
|
16 |
torch.hub.download_url_to_file(
|
17 |
'https://upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Abraham_Lincoln_O-77_matte_collodion_print.jpg/1024px-Abraham_Lincoln_O-77_matte_collodion_print.jpg',
|
18 |
'lincoln.jpg')
|
|
|
|
|
19 |
torch.hub.download_url_to_file(
|
20 |
+
'https://user-images.githubusercontent.com/17445847/187400315-87a90ac9-d231-45d6-b377-38702bd1838f.jpg',
|
21 |
+
'AI-generate.jpg')
|
22 |
torch.hub.download_url_to_file(
|
23 |
+
'https://user-images.githubusercontent.com/17445847/187400981-8a58f7a4-ef61-42d9-af80-bc6234cef860.jpg',
|
24 |
+
'Blake_Lively.jpg')
|
25 |
torch.hub.download_url_to_file(
|
26 |
+
'https://user-images.githubusercontent.com/17445847/187401133-8a3bf269-5b4d-4432-b2f0-6d26ee1d3307.png',
|
27 |
+
'10045.jpg')
|
28 |
|
29 |
# determine models according to model names
|
30 |
+
|
31 |
+
|
32 |
+
# background enhancer with RealESRGAN
|
33 |
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
|
34 |
netscale = 4
|
35 |
model_path = os.path.join('weights', 'realesr-general-x4v3.pth')
|
|
|
|
|
36 |
half = True if torch.cuda.is_available() else False
|
37 |
upsampler = RealESRGANer(scale=netscale, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)
|
38 |
|
39 |
# Use GFPGAN for face enhancement
|
40 |
+
face_enhancer_v3 = GFPGANer(
|
|
|
|
|
41 |
model_path='weights/GFPGANv1.3.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
|
42 |
+
face_enhancer_v2 = GFPGANer(
|
43 |
+
model_path='weights/GFPGANv1.2.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
|
44 |
os.makedirs('output', exist_ok=True)
|
45 |
|
46 |
+
def inference(img, version, scale):
|
47 |
+
print(torch.cuda.is_available())
|
48 |
img = cv2.imread(img, cv2.IMREAD_UNCHANGED)
|
49 |
+
if len(img.shape) == 3 and img.shape[2] == 4:
|
50 |
+
img_mode = 'RGBA'
|
51 |
+
else:
|
52 |
+
img_mode = None
|
53 |
|
54 |
h, w = img.shape[0:2]
|
55 |
if h < 400:
|
56 |
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
|
57 |
|
58 |
+
if version == 'v1.2':
|
59 |
+
face_enhancer = face_enhancer_v2
|
60 |
+
else:
|
61 |
+
face_enhancer = face_enhancer_v3
|
62 |
try:
|
63 |
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
|
64 |
except RuntimeError as error:
|
65 |
print('Error', error)
|
66 |
print('If you encounter CUDA out of memory, try to set --tile with a smaller number.')
|
67 |
else:
|
68 |
+
|
69 |
extension = 'png'
|
70 |
if scale != 2:
|
71 |
+
interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
|
72 |
h, w = img.shape[0:2]
|
73 |
+
output = cv2.resize(output, (int(w * scale /2), int(h * scale/2)), interpolation=interpolation)
|
74 |
+
if img_mode == 'RGBA': # RGBA images should be saved in png format
|
75 |
+
extension = 'png'
|
76 |
+
else:
|
77 |
+
extension = 'jpg'
|
78 |
+
save_path = f'output/out.{extension}'
|
79 |
+
cv2.imwrite(save_path, output)
|
80 |
+
|
81 |
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
|
82 |
+
return output, save_path
|
83 |
|
84 |
|
85 |
title = "GFPGAN: Practical Face Restoration Algorithm"
|
86 |
+
description = r"""
|
87 |
+
Gradio demo for <a href='https://github.com/TencentARC/GFPGAN' target='_blank'><b>GFPGAN: Towards Real-World Blind Face Restoration with Generative Facial Prior</b></a>. <br>
|
88 |
+
[![GitHub Stars](https://img.shields.io/github/stars/TencentARC/GFPGAN?style=social)](https://github.com/TencentARC/GFPGAN)
|
89 |
+
It can be used to: <br>
|
90 |
+
- Upsample/Restore your **old photos**
|
91 |
+
- Upsample/Improve **AI-generated faces**
|
92 |
+
|
93 |
+
To use it, simply upload your image. Please click submit only once.
|
94 |
+
"""
|
95 |
+
article = r"""<p style='text-align: center'><a href='https://arxiv.org/abs/2101.04061' target='_blank'>GFPGAN: Towards Real-World Blind Face Restoration with Generative Facial Prior</a> | <a href='https://github.com/TencentARC/GFPGAN' target='_blank'>Github Repo</a></p><center><img src='https://visitor-badge.glitch.me/badge?page_id=akhaliq_GFPGAN' alt='visitor badge'></center>
|
96 |
+
|
97 |
+
[![arXiv](https://img.shields.io/badge/arXiv-Paper-<COLOR>.svg)](https://arxiv.org/abs/2101.04061)
|
98 |
+
[![GitHub Stars](https://img.shields.io/github/stars/TencentARC/GFPGAN?style=social)](https://github.com/TencentARC/GFPGAN)
|
99 |
+
[![download](https://img.shields.io/github/downloads/TencentARC/GFPGAN/total.svg)](https://github.com/TencentARC/GFPGAN/releases)
|
100 |
+
|
101 |
+
"""
|
102 |
gr.Interface(
|
103 |
+
inference,
|
104 |
+
[gr.inputs.Image(type="filepath", label="Input"),
|
105 |
+
gr.inputs.Radio(['v1.2','v1.3'], type="value", default='v1.3', label='GFPGAN version'),
|
106 |
+
gr.inputs.Number(label="Rescaling factor", default=2)],
|
107 |
+
[gr.outputs.Image(type="numpy", label="Output (The whole image)"),
|
108 |
+
gr.outputs.File(label="Download the output image")],
|
109 |
title=title,
|
110 |
description=description,
|
111 |
article=article,
|
112 |
+
examples=[['AI-generate.jpg', 'v1.3', 2], ['lincoln.png', 'v1.3',2], ['Blake_Lively.jpg', 'v1.3',2], ['10045.jpg', 'v1.3',2]).launch()
|
gfpgan_utils.py
DELETED
@@ -1,119 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
|
3 |
-
import cv2
|
4 |
-
import torch
|
5 |
-
from basicsr.utils import img2tensor, tensor2img
|
6 |
-
from basicsr.utils.download_util import load_file_from_url
|
7 |
-
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
|
8 |
-
from torchvision.transforms.functional import normalize
|
9 |
-
|
10 |
-
from gfpganv1_clean_arch import GFPGANv1Clean
|
11 |
-
|
12 |
-
ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
13 |
-
|
14 |
-
|
15 |
-
class GFPGANer():
|
16 |
-
"""Helper for restoration with GFPGAN.
|
17 |
-
|
18 |
-
It will detect and crop faces, and then resize the faces to 512x512.
|
19 |
-
GFPGAN is used to restored the resized faces.
|
20 |
-
The background is upsampled with the bg_upsampler.
|
21 |
-
Finally, the faces will be pasted back to the upsample background image.
|
22 |
-
|
23 |
-
Args:
|
24 |
-
model_path (str): The path to the GFPGAN model. It can be urls (will first download it automatically).
|
25 |
-
upscale (float): The upscale of the final output. Default: 2.
|
26 |
-
arch (str): The GFPGAN architecture. Option: clean | original. Default: clean.
|
27 |
-
channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
|
28 |
-
bg_upsampler (nn.Module): The upsampler for the background. Default: None.
|
29 |
-
"""
|
30 |
-
|
31 |
-
def __init__(self, model_path, upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=None, device=None):
|
32 |
-
self.upscale = upscale
|
33 |
-
self.bg_upsampler = bg_upsampler
|
34 |
-
|
35 |
-
# initialize model
|
36 |
-
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if device is None else device
|
37 |
-
# initialize the GFP-GAN
|
38 |
-
self.gfpgan = GFPGANv1Clean(
|
39 |
-
out_size=512,
|
40 |
-
num_style_feat=512,
|
41 |
-
channel_multiplier=channel_multiplier,
|
42 |
-
decoder_load_path=None,
|
43 |
-
fix_decoder=False,
|
44 |
-
num_mlp=8,
|
45 |
-
input_is_latent=True,
|
46 |
-
different_w=True,
|
47 |
-
narrow=1,
|
48 |
-
sft_half=True)
|
49 |
-
|
50 |
-
# initialize face helper
|
51 |
-
self.face_helper = FaceRestoreHelper(
|
52 |
-
upscale,
|
53 |
-
face_size=512,
|
54 |
-
crop_ratio=(1, 1),
|
55 |
-
det_model='retinaface_resnet50',
|
56 |
-
save_ext='png',
|
57 |
-
use_parse=True,
|
58 |
-
device=self.device)
|
59 |
-
|
60 |
-
if model_path.startswith('https://'):
|
61 |
-
model_path = load_file_from_url(
|
62 |
-
url=model_path, model_dir=os.path.join(ROOT_DIR, 'gfpgan/weights'), progress=True, file_name=None)
|
63 |
-
loadnet = torch.load(model_path)
|
64 |
-
if 'params_ema' in loadnet:
|
65 |
-
keyname = 'params_ema'
|
66 |
-
else:
|
67 |
-
keyname = 'params'
|
68 |
-
self.gfpgan.load_state_dict(loadnet[keyname], strict=True)
|
69 |
-
self.gfpgan.eval()
|
70 |
-
self.gfpgan = self.gfpgan.to(self.device)
|
71 |
-
|
72 |
-
@torch.no_grad()
|
73 |
-
def enhance(self, img, has_aligned=False, only_center_face=False, paste_back=True):
|
74 |
-
self.face_helper.clean_all()
|
75 |
-
|
76 |
-
if has_aligned: # the inputs are already aligned
|
77 |
-
img = cv2.resize(img, (512, 512))
|
78 |
-
self.face_helper.cropped_faces = [img]
|
79 |
-
else:
|
80 |
-
self.face_helper.read_image(img)
|
81 |
-
# get face landmarks for each face
|
82 |
-
self.face_helper.get_face_landmarks_5(only_center_face=only_center_face, eye_dist_threshold=5)
|
83 |
-
# eye_dist_threshold=5: skip faces whose eye distance is smaller than 5 pixels
|
84 |
-
# TODO: even with eye_dist_threshold, it will still introduce wrong detections and restorations.
|
85 |
-
# align and warp each face
|
86 |
-
self.face_helper.align_warp_face()
|
87 |
-
|
88 |
-
# face restoration
|
89 |
-
for cropped_face in self.face_helper.cropped_faces:
|
90 |
-
# prepare data
|
91 |
-
cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
|
92 |
-
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
|
93 |
-
cropped_face_t = cropped_face_t.unsqueeze(0).to(self.device)
|
94 |
-
|
95 |
-
try:
|
96 |
-
output = self.gfpgan(cropped_face_t, return_rgb=False)[0]
|
97 |
-
# convert to image
|
98 |
-
restored_face = tensor2img(output.squeeze(0), rgb2bgr=True, min_max=(-1, 1))
|
99 |
-
except RuntimeError as error:
|
100 |
-
print(f'\tFailed inference for GFPGAN: {error}.')
|
101 |
-
restored_face = cropped_face
|
102 |
-
|
103 |
-
restored_face = restored_face.astype('uint8')
|
104 |
-
self.face_helper.add_restored_face(restored_face)
|
105 |
-
|
106 |
-
if not has_aligned and paste_back:
|
107 |
-
# upsample the background
|
108 |
-
if self.bg_upsampler is not None:
|
109 |
-
# Now only support RealESRGAN for upsampling background
|
110 |
-
bg_img = self.bg_upsampler.enhance(img, outscale=self.upscale)[0]
|
111 |
-
else:
|
112 |
-
bg_img = None
|
113 |
-
|
114 |
-
self.face_helper.get_inverse_affine(None)
|
115 |
-
# paste each restored face to the input image
|
116 |
-
restored_img = self.face_helper.paste_faces_to_input_image(upsample_img=bg_img)
|
117 |
-
return self.face_helper.cropped_faces, self.face_helper.restored_faces, restored_img
|
118 |
-
else:
|
119 |
-
return self.face_helper.cropped_faces, self.face_helper.restored_faces, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
gfpganv1_clean_arch.py
DELETED
@@ -1,325 +0,0 @@
|
|
1 |
-
import math
|
2 |
-
import random
|
3 |
-
|
4 |
-
import torch
|
5 |
-
from basicsr.utils.registry import ARCH_REGISTRY
|
6 |
-
from torch import nn
|
7 |
-
from torch.nn import functional as F
|
8 |
-
|
9 |
-
from stylegan2_clean_arch import StyleGAN2GeneratorClean
|
10 |
-
|
11 |
-
|
12 |
-
class StyleGAN2GeneratorCSFT(StyleGAN2GeneratorClean):
|
13 |
-
"""StyleGAN2 Generator with SFT modulation (Spatial Feature Transform).
|
14 |
-
|
15 |
-
It is the clean version without custom compiled CUDA extensions used in StyleGAN2.
|
16 |
-
|
17 |
-
Args:
|
18 |
-
out_size (int): The spatial size of outputs.
|
19 |
-
num_style_feat (int): Channel number of style features. Default: 512.
|
20 |
-
num_mlp (int): Layer number of MLP style layers. Default: 8.
|
21 |
-
channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
|
22 |
-
narrow (float): The narrow ratio for channels. Default: 1.
|
23 |
-
sft_half (bool): Whether to apply SFT on half of the input channels. Default: False.
|
24 |
-
"""
|
25 |
-
|
26 |
-
def __init__(self, out_size, num_style_feat=512, num_mlp=8, channel_multiplier=2, narrow=1, sft_half=False):
|
27 |
-
super(StyleGAN2GeneratorCSFT, self).__init__(
|
28 |
-
out_size,
|
29 |
-
num_style_feat=num_style_feat,
|
30 |
-
num_mlp=num_mlp,
|
31 |
-
channel_multiplier=channel_multiplier,
|
32 |
-
narrow=narrow)
|
33 |
-
self.sft_half = sft_half
|
34 |
-
|
35 |
-
def forward(self,
|
36 |
-
styles,
|
37 |
-
conditions,
|
38 |
-
input_is_latent=False,
|
39 |
-
noise=None,
|
40 |
-
randomize_noise=True,
|
41 |
-
truncation=1,
|
42 |
-
truncation_latent=None,
|
43 |
-
inject_index=None,
|
44 |
-
return_latents=False):
|
45 |
-
"""Forward function for StyleGAN2GeneratorCSFT.
|
46 |
-
|
47 |
-
Args:
|
48 |
-
styles (list[Tensor]): Sample codes of styles.
|
49 |
-
conditions (list[Tensor]): SFT conditions to generators.
|
50 |
-
input_is_latent (bool): Whether input is latent style. Default: False.
|
51 |
-
noise (Tensor | None): Input noise or None. Default: None.
|
52 |
-
randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True.
|
53 |
-
truncation (float): The truncation ratio. Default: 1.
|
54 |
-
truncation_latent (Tensor | None): The truncation latent tensor. Default: None.
|
55 |
-
inject_index (int | None): The injection index for mixing noise. Default: None.
|
56 |
-
return_latents (bool): Whether to return style latents. Default: False.
|
57 |
-
"""
|
58 |
-
# style codes -> latents with Style MLP layer
|
59 |
-
if not input_is_latent:
|
60 |
-
styles = [self.style_mlp(s) for s in styles]
|
61 |
-
# noises
|
62 |
-
if noise is None:
|
63 |
-
if randomize_noise:
|
64 |
-
noise = [None] * self.num_layers # for each style conv layer
|
65 |
-
else: # use the stored noise
|
66 |
-
noise = [getattr(self.noises, f'noise{i}') for i in range(self.num_layers)]
|
67 |
-
# style truncation
|
68 |
-
if truncation < 1:
|
69 |
-
style_truncation = []
|
70 |
-
for style in styles:
|
71 |
-
style_truncation.append(truncation_latent + truncation * (style - truncation_latent))
|
72 |
-
styles = style_truncation
|
73 |
-
# get style latents with injection
|
74 |
-
if len(styles) == 1:
|
75 |
-
inject_index = self.num_latent
|
76 |
-
|
77 |
-
if styles[0].ndim < 3:
|
78 |
-
# repeat latent code for all the layers
|
79 |
-
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
|
80 |
-
else: # used for encoder with different latent code for each layer
|
81 |
-
latent = styles[0]
|
82 |
-
elif len(styles) == 2: # mixing noises
|
83 |
-
if inject_index is None:
|
84 |
-
inject_index = random.randint(1, self.num_latent - 1)
|
85 |
-
latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
|
86 |
-
latent2 = styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1)
|
87 |
-
latent = torch.cat([latent1, latent2], 1)
|
88 |
-
|
89 |
-
# main generation
|
90 |
-
out = self.constant_input(latent.shape[0])
|
91 |
-
out = self.style_conv1(out, latent[:, 0], noise=noise[0])
|
92 |
-
skip = self.to_rgb1(out, latent[:, 1])
|
93 |
-
|
94 |
-
i = 1
|
95 |
-
for conv1, conv2, noise1, noise2, to_rgb in zip(self.style_convs[::2], self.style_convs[1::2], noise[1::2],
|
96 |
-
noise[2::2], self.to_rgbs):
|
97 |
-
out = conv1(out, latent[:, i], noise=noise1)
|
98 |
-
|
99 |
-
# the conditions may have fewer levels
|
100 |
-
if i < len(conditions):
|
101 |
-
# SFT part to combine the conditions
|
102 |
-
if self.sft_half: # only apply SFT to half of the channels
|
103 |
-
out_same, out_sft = torch.split(out, int(out.size(1) // 2), dim=1)
|
104 |
-
out_sft = out_sft * conditions[i - 1] + conditions[i]
|
105 |
-
out = torch.cat([out_same, out_sft], dim=1)
|
106 |
-
else: # apply SFT to all the channels
|
107 |
-
out = out * conditions[i - 1] + conditions[i]
|
108 |
-
|
109 |
-
out = conv2(out, latent[:, i + 1], noise=noise2)
|
110 |
-
skip = to_rgb(out, latent[:, i + 2], skip) # feature back to the rgb space
|
111 |
-
i += 2
|
112 |
-
|
113 |
-
image = skip
|
114 |
-
|
115 |
-
if return_latents:
|
116 |
-
return image, latent
|
117 |
-
else:
|
118 |
-
return image, None
|
119 |
-
|
120 |
-
|
121 |
-
class ResBlock(nn.Module):
|
122 |
-
"""Residual block with bilinear upsampling/downsampling.
|
123 |
-
|
124 |
-
Args:
|
125 |
-
in_channels (int): Channel number of the input.
|
126 |
-
out_channels (int): Channel number of the output.
|
127 |
-
mode (str): Upsampling/downsampling mode. Options: down | up. Default: down.
|
128 |
-
"""
|
129 |
-
|
130 |
-
def __init__(self, in_channels, out_channels, mode='down'):
|
131 |
-
super(ResBlock, self).__init__()
|
132 |
-
|
133 |
-
self.conv1 = nn.Conv2d(in_channels, in_channels, 3, 1, 1)
|
134 |
-
self.conv2 = nn.Conv2d(in_channels, out_channels, 3, 1, 1)
|
135 |
-
self.skip = nn.Conv2d(in_channels, out_channels, 1, bias=False)
|
136 |
-
if mode == 'down':
|
137 |
-
self.scale_factor = 0.5
|
138 |
-
elif mode == 'up':
|
139 |
-
self.scale_factor = 2
|
140 |
-
|
141 |
-
def forward(self, x):
|
142 |
-
out = F.leaky_relu_(self.conv1(x), negative_slope=0.2)
|
143 |
-
# upsample/downsample
|
144 |
-
out = F.interpolate(out, scale_factor=self.scale_factor, mode='bilinear', align_corners=False)
|
145 |
-
out = F.leaky_relu_(self.conv2(out), negative_slope=0.2)
|
146 |
-
# skip
|
147 |
-
x = F.interpolate(x, scale_factor=self.scale_factor, mode='bilinear', align_corners=False)
|
148 |
-
skip = self.skip(x)
|
149 |
-
out = out + skip
|
150 |
-
return out
|
151 |
-
|
152 |
-
|
153 |
-
@ARCH_REGISTRY.register()
|
154 |
-
class GFPGANv1Clean(nn.Module):
|
155 |
-
"""The GFPGAN architecture: Unet + StyleGAN2 decoder with SFT.
|
156 |
-
|
157 |
-
It is the clean version without custom compiled CUDA extensions used in StyleGAN2.
|
158 |
-
|
159 |
-
Ref: GFP-GAN: Towards Real-World Blind Face Restoration with Generative Facial Prior.
|
160 |
-
|
161 |
-
Args:
|
162 |
-
out_size (int): The spatial size of outputs.
|
163 |
-
num_style_feat (int): Channel number of style features. Default: 512.
|
164 |
-
channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
|
165 |
-
decoder_load_path (str): The path to the pre-trained decoder model (usually, the StyleGAN2). Default: None.
|
166 |
-
fix_decoder (bool): Whether to fix the decoder. Default: True.
|
167 |
-
|
168 |
-
num_mlp (int): Layer number of MLP style layers. Default: 8.
|
169 |
-
input_is_latent (bool): Whether input is latent style. Default: False.
|
170 |
-
different_w (bool): Whether to use different latent w for different layers. Default: False.
|
171 |
-
narrow (float): The narrow ratio for channels. Default: 1.
|
172 |
-
sft_half (bool): Whether to apply SFT on half of the input channels. Default: False.
|
173 |
-
"""
|
174 |
-
|
175 |
-
def __init__(
|
176 |
-
self,
|
177 |
-
out_size,
|
178 |
-
num_style_feat=512,
|
179 |
-
channel_multiplier=1,
|
180 |
-
decoder_load_path=None,
|
181 |
-
fix_decoder=True,
|
182 |
-
# for stylegan decoder
|
183 |
-
num_mlp=8,
|
184 |
-
input_is_latent=False,
|
185 |
-
different_w=False,
|
186 |
-
narrow=1,
|
187 |
-
sft_half=False):
|
188 |
-
|
189 |
-
super(GFPGANv1Clean, self).__init__()
|
190 |
-
self.input_is_latent = input_is_latent
|
191 |
-
self.different_w = different_w
|
192 |
-
self.num_style_feat = num_style_feat
|
193 |
-
|
194 |
-
unet_narrow = narrow * 0.5 # by default, use a half of input channels
|
195 |
-
channels = {
|
196 |
-
'4': int(512 * unet_narrow),
|
197 |
-
'8': int(512 * unet_narrow),
|
198 |
-
'16': int(512 * unet_narrow),
|
199 |
-
'32': int(512 * unet_narrow),
|
200 |
-
'64': int(256 * channel_multiplier * unet_narrow),
|
201 |
-
'128': int(128 * channel_multiplier * unet_narrow),
|
202 |
-
'256': int(64 * channel_multiplier * unet_narrow),
|
203 |
-
'512': int(32 * channel_multiplier * unet_narrow),
|
204 |
-
'1024': int(16 * channel_multiplier * unet_narrow)
|
205 |
-
}
|
206 |
-
|
207 |
-
self.log_size = int(math.log(out_size, 2))
|
208 |
-
first_out_size = 2**(int(math.log(out_size, 2)))
|
209 |
-
|
210 |
-
self.conv_body_first = nn.Conv2d(3, channels[f'{first_out_size}'], 1)
|
211 |
-
|
212 |
-
# downsample
|
213 |
-
in_channels = channels[f'{first_out_size}']
|
214 |
-
self.conv_body_down = nn.ModuleList()
|
215 |
-
for i in range(self.log_size, 2, -1):
|
216 |
-
out_channels = channels[f'{2**(i - 1)}']
|
217 |
-
self.conv_body_down.append(ResBlock(in_channels, out_channels, mode='down'))
|
218 |
-
in_channels = out_channels
|
219 |
-
|
220 |
-
self.final_conv = nn.Conv2d(in_channels, channels['4'], 3, 1, 1)
|
221 |
-
|
222 |
-
# upsample
|
223 |
-
in_channels = channels['4']
|
224 |
-
self.conv_body_up = nn.ModuleList()
|
225 |
-
for i in range(3, self.log_size + 1):
|
226 |
-
out_channels = channels[f'{2**i}']
|
227 |
-
self.conv_body_up.append(ResBlock(in_channels, out_channels, mode='up'))
|
228 |
-
in_channels = out_channels
|
229 |
-
|
230 |
-
# to RGB
|
231 |
-
self.toRGB = nn.ModuleList()
|
232 |
-
for i in range(3, self.log_size + 1):
|
233 |
-
self.toRGB.append(nn.Conv2d(channels[f'{2**i}'], 3, 1))
|
234 |
-
|
235 |
-
if different_w:
|
236 |
-
linear_out_channel = (int(math.log(out_size, 2)) * 2 - 2) * num_style_feat
|
237 |
-
else:
|
238 |
-
linear_out_channel = num_style_feat
|
239 |
-
|
240 |
-
self.final_linear = nn.Linear(channels['4'] * 4 * 4, linear_out_channel)
|
241 |
-
|
242 |
-
# the decoder: stylegan2 generator with SFT modulations
|
243 |
-
self.stylegan_decoder = StyleGAN2GeneratorCSFT(
|
244 |
-
out_size=out_size,
|
245 |
-
num_style_feat=num_style_feat,
|
246 |
-
num_mlp=num_mlp,
|
247 |
-
channel_multiplier=channel_multiplier,
|
248 |
-
narrow=narrow,
|
249 |
-
sft_half=sft_half)
|
250 |
-
|
251 |
-
# load pre-trained stylegan2 model if necessary
|
252 |
-
if decoder_load_path:
|
253 |
-
self.stylegan_decoder.load_state_dict(
|
254 |
-
torch.load(decoder_load_path, map_location=lambda storage, loc: storage)['params_ema'])
|
255 |
-
# fix decoder without updating params
|
256 |
-
if fix_decoder:
|
257 |
-
for _, param in self.stylegan_decoder.named_parameters():
|
258 |
-
param.requires_grad = False
|
259 |
-
|
260 |
-
# for SFT modulations (scale and shift)
|
261 |
-
self.condition_scale = nn.ModuleList()
|
262 |
-
self.condition_shift = nn.ModuleList()
|
263 |
-
for i in range(3, self.log_size + 1):
|
264 |
-
out_channels = channels[f'{2**i}']
|
265 |
-
if sft_half:
|
266 |
-
sft_out_channels = out_channels
|
267 |
-
else:
|
268 |
-
sft_out_channels = out_channels * 2
|
269 |
-
self.condition_scale.append(
|
270 |
-
nn.Sequential(
|
271 |
-
nn.Conv2d(out_channels, out_channels, 3, 1, 1), nn.LeakyReLU(0.2, True),
|
272 |
-
nn.Conv2d(out_channels, sft_out_channels, 3, 1, 1)))
|
273 |
-
self.condition_shift.append(
|
274 |
-
nn.Sequential(
|
275 |
-
nn.Conv2d(out_channels, out_channels, 3, 1, 1), nn.LeakyReLU(0.2, True),
|
276 |
-
nn.Conv2d(out_channels, sft_out_channels, 3, 1, 1)))
|
277 |
-
|
278 |
-
def forward(self, x, return_latents=False, return_rgb=True, randomize_noise=True):
|
279 |
-
"""Forward function for GFPGANv1Clean.
|
280 |
-
|
281 |
-
Args:
|
282 |
-
x (Tensor): Input images.
|
283 |
-
return_latents (bool): Whether to return style latents. Default: False.
|
284 |
-
return_rgb (bool): Whether return intermediate rgb images. Default: True.
|
285 |
-
randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True.
|
286 |
-
"""
|
287 |
-
conditions = []
|
288 |
-
unet_skips = []
|
289 |
-
out_rgbs = []
|
290 |
-
|
291 |
-
# encoder
|
292 |
-
feat = F.leaky_relu_(self.conv_body_first(x), negative_slope=0.2)
|
293 |
-
for i in range(self.log_size - 2):
|
294 |
-
feat = self.conv_body_down[i](feat)
|
295 |
-
unet_skips.insert(0, feat)
|
296 |
-
feat = F.leaky_relu_(self.final_conv(feat), negative_slope=0.2)
|
297 |
-
|
298 |
-
# style code
|
299 |
-
style_code = self.final_linear(feat.view(feat.size(0), -1))
|
300 |
-
if self.different_w:
|
301 |
-
style_code = style_code.view(style_code.size(0), -1, self.num_style_feat)
|
302 |
-
|
303 |
-
# decode
|
304 |
-
for i in range(self.log_size - 2):
|
305 |
-
# add unet skip
|
306 |
-
feat = feat + unet_skips[i]
|
307 |
-
# ResUpLayer
|
308 |
-
feat = self.conv_body_up[i](feat)
|
309 |
-
# generate scale and shift for SFT layers
|
310 |
-
scale = self.condition_scale[i](feat)
|
311 |
-
conditions.append(scale.clone())
|
312 |
-
shift = self.condition_shift[i](feat)
|
313 |
-
conditions.append(shift.clone())
|
314 |
-
# generate rgb images
|
315 |
-
if return_rgb:
|
316 |
-
out_rgbs.append(self.toRGB[i](feat))
|
317 |
-
|
318 |
-
# decoder
|
319 |
-
image, _ = self.stylegan_decoder([style_code],
|
320 |
-
conditions,
|
321 |
-
return_latents=return_latents,
|
322 |
-
input_is_latent=self.input_is_latent,
|
323 |
-
randomize_noise=randomize_noise)
|
324 |
-
|
325 |
-
return image, out_rgbs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
realesrgan_utils.py
DELETED
@@ -1,281 +0,0 @@
|
|
1 |
-
import math
|
2 |
-
import os
|
3 |
-
import queue
|
4 |
-
import threading
|
5 |
-
|
6 |
-
import cv2
|
7 |
-
import numpy as np
|
8 |
-
import torch
|
9 |
-
from basicsr.utils.download_util import load_file_from_url
|
10 |
-
from torch.nn import functional as F
|
11 |
-
|
12 |
-
ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
13 |
-
|
14 |
-
|
15 |
-
class RealESRGANer():
|
16 |
-
"""A helper class for upsampling images with RealESRGAN.
|
17 |
-
|
18 |
-
Args:
|
19 |
-
scale (int): Upsampling scale factor used in the networks. It is usually 2 or 4.
|
20 |
-
model_path (str): The path to the pretrained model. It can be urls (will first download it automatically).
|
21 |
-
model (nn.Module): The defined network. Default: None.
|
22 |
-
tile (int): As too large images result in the out of GPU memory issue, so this tile option will first crop
|
23 |
-
input images into tiles, and then process each of them. Finally, they will be merged into one image.
|
24 |
-
0 denotes for do not use tile. Default: 0.
|
25 |
-
tile_pad (int): The pad size for each tile, to remove border artifacts. Default: 10.
|
26 |
-
pre_pad (int): Pad the input images to avoid border artifacts. Default: 10.
|
27 |
-
half (float): Whether to use half precision during inference. Default: False.
|
28 |
-
"""
|
29 |
-
|
30 |
-
def __init__(self, scale, model_path, model=None, tile=0, tile_pad=10, pre_pad=10, half=False):
|
31 |
-
self.scale = scale
|
32 |
-
self.tile_size = tile
|
33 |
-
self.tile_pad = tile_pad
|
34 |
-
self.pre_pad = pre_pad
|
35 |
-
self.mod_scale = None
|
36 |
-
self.half = half
|
37 |
-
|
38 |
-
# initialize model
|
39 |
-
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
40 |
-
# if the model_path starts with https, it will first download models to the folder: realesrgan/weights
|
41 |
-
if model_path.startswith('https://'):
|
42 |
-
model_path = load_file_from_url(
|
43 |
-
url=model_path, model_dir=os.path.join(ROOT_DIR, 'realesrgan/weights'), progress=True, file_name=None)
|
44 |
-
loadnet = torch.load(model_path, map_location=torch.device('cpu'))
|
45 |
-
# prefer to use params_ema
|
46 |
-
if 'params_ema' in loadnet:
|
47 |
-
keyname = 'params_ema'
|
48 |
-
else:
|
49 |
-
keyname = 'params'
|
50 |
-
model.load_state_dict(loadnet[keyname], strict=True)
|
51 |
-
model.eval()
|
52 |
-
self.model = model.to(self.device)
|
53 |
-
if self.half:
|
54 |
-
self.model = self.model.half()
|
55 |
-
|
56 |
-
def pre_process(self, img):
|
57 |
-
"""Pre-process, such as pre-pad and mod pad, so that the images can be divisible
|
58 |
-
"""
|
59 |
-
img = torch.from_numpy(np.transpose(img, (2, 0, 1))).float()
|
60 |
-
self.img = img.unsqueeze(0).to(self.device)
|
61 |
-
if self.half:
|
62 |
-
self.img = self.img.half()
|
63 |
-
|
64 |
-
# pre_pad
|
65 |
-
if self.pre_pad != 0:
|
66 |
-
self.img = F.pad(self.img, (0, self.pre_pad, 0, self.pre_pad), 'reflect')
|
67 |
-
# mod pad for divisible borders
|
68 |
-
if self.scale == 2:
|
69 |
-
self.mod_scale = 2
|
70 |
-
elif self.scale == 1:
|
71 |
-
self.mod_scale = 4
|
72 |
-
if self.mod_scale is not None:
|
73 |
-
self.mod_pad_h, self.mod_pad_w = 0, 0
|
74 |
-
_, _, h, w = self.img.size()
|
75 |
-
if (h % self.mod_scale != 0):
|
76 |
-
self.mod_pad_h = (self.mod_scale - h % self.mod_scale)
|
77 |
-
if (w % self.mod_scale != 0):
|
78 |
-
self.mod_pad_w = (self.mod_scale - w % self.mod_scale)
|
79 |
-
self.img = F.pad(self.img, (0, self.mod_pad_w, 0, self.mod_pad_h), 'reflect')
|
80 |
-
|
81 |
-
def process(self):
|
82 |
-
# model inference
|
83 |
-
self.output = self.model(self.img)
|
84 |
-
|
85 |
-
def tile_process(self):
|
86 |
-
"""It will first crop input images to tiles, and then process each tile.
|
87 |
-
Finally, all the processed tiles are merged into one images.
|
88 |
-
|
89 |
-
Modified from: https://github.com/ata4/esrgan-launcher
|
90 |
-
"""
|
91 |
-
batch, channel, height, width = self.img.shape
|
92 |
-
output_height = height * self.scale
|
93 |
-
output_width = width * self.scale
|
94 |
-
output_shape = (batch, channel, output_height, output_width)
|
95 |
-
|
96 |
-
# start with black image
|
97 |
-
self.output = self.img.new_zeros(output_shape)
|
98 |
-
tiles_x = math.ceil(width / self.tile_size)
|
99 |
-
tiles_y = math.ceil(height / self.tile_size)
|
100 |
-
|
101 |
-
# loop over all tiles
|
102 |
-
for y in range(tiles_y):
|
103 |
-
for x in range(tiles_x):
|
104 |
-
# extract tile from input image
|
105 |
-
ofs_x = x * self.tile_size
|
106 |
-
ofs_y = y * self.tile_size
|
107 |
-
# input tile area on total image
|
108 |
-
input_start_x = ofs_x
|
109 |
-
input_end_x = min(ofs_x + self.tile_size, width)
|
110 |
-
input_start_y = ofs_y
|
111 |
-
input_end_y = min(ofs_y + self.tile_size, height)
|
112 |
-
|
113 |
-
# input tile area on total image with padding
|
114 |
-
input_start_x_pad = max(input_start_x - self.tile_pad, 0)
|
115 |
-
input_end_x_pad = min(input_end_x + self.tile_pad, width)
|
116 |
-
input_start_y_pad = max(input_start_y - self.tile_pad, 0)
|
117 |
-
input_end_y_pad = min(input_end_y + self.tile_pad, height)
|
118 |
-
|
119 |
-
# input tile dimensions
|
120 |
-
input_tile_width = input_end_x - input_start_x
|
121 |
-
input_tile_height = input_end_y - input_start_y
|
122 |
-
tile_idx = y * tiles_x + x + 1
|
123 |
-
input_tile = self.img[:, :, input_start_y_pad:input_end_y_pad, input_start_x_pad:input_end_x_pad]
|
124 |
-
|
125 |
-
# upscale tile
|
126 |
-
try:
|
127 |
-
with torch.no_grad():
|
128 |
-
output_tile = self.model(input_tile)
|
129 |
-
except RuntimeError as error:
|
130 |
-
print('Error', error)
|
131 |
-
print(f'\tTile {tile_idx}/{tiles_x * tiles_y}')
|
132 |
-
|
133 |
-
# output tile area on total image
|
134 |
-
output_start_x = input_start_x * self.scale
|
135 |
-
output_end_x = input_end_x * self.scale
|
136 |
-
output_start_y = input_start_y * self.scale
|
137 |
-
output_end_y = input_end_y * self.scale
|
138 |
-
|
139 |
-
# output tile area without padding
|
140 |
-
output_start_x_tile = (input_start_x - input_start_x_pad) * self.scale
|
141 |
-
output_end_x_tile = output_start_x_tile + input_tile_width * self.scale
|
142 |
-
output_start_y_tile = (input_start_y - input_start_y_pad) * self.scale
|
143 |
-
output_end_y_tile = output_start_y_tile + input_tile_height * self.scale
|
144 |
-
|
145 |
-
# put tile into output image
|
146 |
-
self.output[:, :, output_start_y:output_end_y,
|
147 |
-
output_start_x:output_end_x] = output_tile[:, :, output_start_y_tile:output_end_y_tile,
|
148 |
-
output_start_x_tile:output_end_x_tile]
|
149 |
-
|
150 |
-
def post_process(self):
|
151 |
-
# remove extra pad
|
152 |
-
if self.mod_scale is not None:
|
153 |
-
_, _, h, w = self.output.size()
|
154 |
-
self.output = self.output[:, :, 0:h - self.mod_pad_h * self.scale, 0:w - self.mod_pad_w * self.scale]
|
155 |
-
# remove prepad
|
156 |
-
if self.pre_pad != 0:
|
157 |
-
_, _, h, w = self.output.size()
|
158 |
-
self.output = self.output[:, :, 0:h - self.pre_pad * self.scale, 0:w - self.pre_pad * self.scale]
|
159 |
-
return self.output
|
160 |
-
|
161 |
-
@torch.no_grad()
|
162 |
-
def enhance(self, img, outscale=None, alpha_upsampler='realesrgan'):
|
163 |
-
h_input, w_input = img.shape[0:2]
|
164 |
-
# img: numpy
|
165 |
-
img = img.astype(np.float32)
|
166 |
-
if np.max(img) > 256: # 16-bit image
|
167 |
-
max_range = 65535
|
168 |
-
print('\tInput is a 16-bit image')
|
169 |
-
else:
|
170 |
-
max_range = 255
|
171 |
-
img = img / max_range
|
172 |
-
if len(img.shape) == 2: # gray image
|
173 |
-
img_mode = 'L'
|
174 |
-
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
|
175 |
-
elif img.shape[2] == 4: # RGBA image with alpha channel
|
176 |
-
img_mode = 'RGBA'
|
177 |
-
alpha = img[:, :, 3]
|
178 |
-
img = img[:, :, 0:3]
|
179 |
-
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
180 |
-
if alpha_upsampler == 'realesrgan':
|
181 |
-
alpha = cv2.cvtColor(alpha, cv2.COLOR_GRAY2RGB)
|
182 |
-
else:
|
183 |
-
img_mode = 'RGB'
|
184 |
-
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
185 |
-
|
186 |
-
# ------------------- process image (without the alpha channel) ------------------- #
|
187 |
-
self.pre_process(img)
|
188 |
-
if self.tile_size > 0:
|
189 |
-
self.tile_process()
|
190 |
-
else:
|
191 |
-
self.process()
|
192 |
-
output_img = self.post_process()
|
193 |
-
output_img = output_img.data.squeeze().float().cpu().clamp_(0, 1).numpy()
|
194 |
-
output_img = np.transpose(output_img[[2, 1, 0], :, :], (1, 2, 0))
|
195 |
-
if img_mode == 'L':
|
196 |
-
output_img = cv2.cvtColor(output_img, cv2.COLOR_BGR2GRAY)
|
197 |
-
|
198 |
-
# ------------------- process the alpha channel if necessary ------------------- #
|
199 |
-
if img_mode == 'RGBA':
|
200 |
-
if alpha_upsampler == 'realesrgan':
|
201 |
-
self.pre_process(alpha)
|
202 |
-
if self.tile_size > 0:
|
203 |
-
self.tile_process()
|
204 |
-
else:
|
205 |
-
self.process()
|
206 |
-
output_alpha = self.post_process()
|
207 |
-
output_alpha = output_alpha.data.squeeze().float().cpu().clamp_(0, 1).numpy()
|
208 |
-
output_alpha = np.transpose(output_alpha[[2, 1, 0], :, :], (1, 2, 0))
|
209 |
-
output_alpha = cv2.cvtColor(output_alpha, cv2.COLOR_BGR2GRAY)
|
210 |
-
else: # use the cv2 resize for alpha channel
|
211 |
-
h, w = alpha.shape[0:2]
|
212 |
-
output_alpha = cv2.resize(alpha, (w * self.scale, h * self.scale), interpolation=cv2.INTER_LINEAR)
|
213 |
-
|
214 |
-
# merge the alpha channel
|
215 |
-
output_img = cv2.cvtColor(output_img, cv2.COLOR_BGR2BGRA)
|
216 |
-
output_img[:, :, 3] = output_alpha
|
217 |
-
|
218 |
-
# ------------------------------ return ------------------------------ #
|
219 |
-
if max_range == 65535: # 16-bit image
|
220 |
-
output = (output_img * 65535.0).round().astype(np.uint16)
|
221 |
-
else:
|
222 |
-
output = (output_img * 255.0).round().astype(np.uint8)
|
223 |
-
|
224 |
-
if outscale is not None and outscale != float(self.scale):
|
225 |
-
output = cv2.resize(
|
226 |
-
output, (
|
227 |
-
int(w_input * outscale),
|
228 |
-
int(h_input * outscale),
|
229 |
-
), interpolation=cv2.INTER_LANCZOS4)
|
230 |
-
|
231 |
-
return output, img_mode
|
232 |
-
|
233 |
-
|
234 |
-
class PrefetchReader(threading.Thread):
|
235 |
-
"""Prefetch images.
|
236 |
-
|
237 |
-
Args:
|
238 |
-
img_list (list[str]): A image list of image paths to be read.
|
239 |
-
num_prefetch_queue (int): Number of prefetch queue.
|
240 |
-
"""
|
241 |
-
|
242 |
-
def __init__(self, img_list, num_prefetch_queue):
|
243 |
-
super().__init__()
|
244 |
-
self.que = queue.Queue(num_prefetch_queue)
|
245 |
-
self.img_list = img_list
|
246 |
-
|
247 |
-
def run(self):
|
248 |
-
for img_path in self.img_list:
|
249 |
-
img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED)
|
250 |
-
self.que.put(img)
|
251 |
-
|
252 |
-
self.que.put(None)
|
253 |
-
|
254 |
-
def __next__(self):
|
255 |
-
next_item = self.que.get()
|
256 |
-
if next_item is None:
|
257 |
-
raise StopIteration
|
258 |
-
return next_item
|
259 |
-
|
260 |
-
def __iter__(self):
|
261 |
-
return self
|
262 |
-
|
263 |
-
|
264 |
-
class IOConsumer(threading.Thread):
|
265 |
-
|
266 |
-
def __init__(self, opt, que, qid):
|
267 |
-
super().__init__()
|
268 |
-
self._queue = que
|
269 |
-
self.qid = qid
|
270 |
-
self.opt = opt
|
271 |
-
|
272 |
-
def run(self):
|
273 |
-
while True:
|
274 |
-
msg = self._queue.get()
|
275 |
-
if isinstance(msg, str) and msg == 'quit':
|
276 |
-
break
|
277 |
-
|
278 |
-
output = msg['output']
|
279 |
-
save_path = msg['save_path']
|
280 |
-
cv2.imwrite(save_path, output)
|
281 |
-
print(f'IO worker {self.qid} is done.')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
srvgg_arch.py
DELETED
@@ -1,67 +0,0 @@
|
|
1 |
-
from torch import nn as nn
|
2 |
-
from torch.nn import functional as F
|
3 |
-
|
4 |
-
|
5 |
-
class SRVGGNetCompact(nn.Module):
|
6 |
-
"""A compact VGG-style network structure for super-resolution.
|
7 |
-
|
8 |
-
It is a compact network structure, which performs upsampling in the last layer and no convolution is
|
9 |
-
conducted on the HR feature space.
|
10 |
-
|
11 |
-
Args:
|
12 |
-
num_in_ch (int): Channel number of inputs. Default: 3.
|
13 |
-
num_out_ch (int): Channel number of outputs. Default: 3.
|
14 |
-
num_feat (int): Channel number of intermediate features. Default: 64.
|
15 |
-
num_conv (int): Number of convolution layers in the body network. Default: 16.
|
16 |
-
upscale (int): Upsampling factor. Default: 4.
|
17 |
-
act_type (str): Activation type, options: 'relu', 'prelu', 'leakyrelu'. Default: prelu.
|
18 |
-
"""
|
19 |
-
|
20 |
-
def __init__(self, num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu'):
|
21 |
-
super(SRVGGNetCompact, self).__init__()
|
22 |
-
self.num_in_ch = num_in_ch
|
23 |
-
self.num_out_ch = num_out_ch
|
24 |
-
self.num_feat = num_feat
|
25 |
-
self.num_conv = num_conv
|
26 |
-
self.upscale = upscale
|
27 |
-
self.act_type = act_type
|
28 |
-
|
29 |
-
self.body = nn.ModuleList()
|
30 |
-
# the first conv
|
31 |
-
self.body.append(nn.Conv2d(num_in_ch, num_feat, 3, 1, 1))
|
32 |
-
# the first activation
|
33 |
-
if act_type == 'relu':
|
34 |
-
activation = nn.ReLU(inplace=True)
|
35 |
-
elif act_type == 'prelu':
|
36 |
-
activation = nn.PReLU(num_parameters=num_feat)
|
37 |
-
elif act_type == 'leakyrelu':
|
38 |
-
activation = nn.LeakyReLU(negative_slope=0.1, inplace=True)
|
39 |
-
self.body.append(activation)
|
40 |
-
|
41 |
-
# the body structure
|
42 |
-
for _ in range(num_conv):
|
43 |
-
self.body.append(nn.Conv2d(num_feat, num_feat, 3, 1, 1))
|
44 |
-
# activation
|
45 |
-
if act_type == 'relu':
|
46 |
-
activation = nn.ReLU(inplace=True)
|
47 |
-
elif act_type == 'prelu':
|
48 |
-
activation = nn.PReLU(num_parameters=num_feat)
|
49 |
-
elif act_type == 'leakyrelu':
|
50 |
-
activation = nn.LeakyReLU(negative_slope=0.1, inplace=True)
|
51 |
-
self.body.append(activation)
|
52 |
-
|
53 |
-
# the last conv
|
54 |
-
self.body.append(nn.Conv2d(num_feat, num_out_ch * upscale * upscale, 3, 1, 1))
|
55 |
-
# upsample
|
56 |
-
self.upsampler = nn.PixelShuffle(upscale)
|
57 |
-
|
58 |
-
def forward(self, x):
|
59 |
-
out = x
|
60 |
-
for i in range(0, len(self.body)):
|
61 |
-
out = self.body[i](out)
|
62 |
-
|
63 |
-
out = self.upsampler(out)
|
64 |
-
# add the nearest upsampled image, so that the network learns the residual
|
65 |
-
base = F.interpolate(x, scale_factor=self.upscale, mode='nearest')
|
66 |
-
out += base
|
67 |
-
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stylegan2_clean_arch.py
DELETED
@@ -1,369 +0,0 @@
|
|
1 |
-
import math
|
2 |
-
import random
|
3 |
-
|
4 |
-
import torch
|
5 |
-
from basicsr.archs.arch_util import default_init_weights
|
6 |
-
from basicsr.utils.registry import ARCH_REGISTRY
|
7 |
-
from torch import nn
|
8 |
-
from torch.nn import functional as F
|
9 |
-
|
10 |
-
|
11 |
-
class NormStyleCode(nn.Module):
|
12 |
-
|
13 |
-
def forward(self, x):
|
14 |
-
"""Normalize the style codes.
|
15 |
-
|
16 |
-
Args:
|
17 |
-
x (Tensor): Style codes with shape (b, c).
|
18 |
-
|
19 |
-
Returns:
|
20 |
-
Tensor: Normalized tensor.
|
21 |
-
"""
|
22 |
-
return x * torch.rsqrt(torch.mean(x**2, dim=1, keepdim=True) + 1e-8)
|
23 |
-
|
24 |
-
|
25 |
-
class ModulatedConv2d(nn.Module):
|
26 |
-
"""Modulated Conv2d used in StyleGAN2.
|
27 |
-
|
28 |
-
There is no bias in ModulatedConv2d.
|
29 |
-
|
30 |
-
Args:
|
31 |
-
in_channels (int): Channel number of the input.
|
32 |
-
out_channels (int): Channel number of the output.
|
33 |
-
kernel_size (int): Size of the convolving kernel.
|
34 |
-
num_style_feat (int): Channel number of style features.
|
35 |
-
demodulate (bool): Whether to demodulate in the conv layer. Default: True.
|
36 |
-
sample_mode (str | None): Indicating 'upsample', 'downsample' or None. Default: None.
|
37 |
-
eps (float): A value added to the denominator for numerical stability. Default: 1e-8.
|
38 |
-
"""
|
39 |
-
|
40 |
-
def __init__(self,
|
41 |
-
in_channels,
|
42 |
-
out_channels,
|
43 |
-
kernel_size,
|
44 |
-
num_style_feat,
|
45 |
-
demodulate=True,
|
46 |
-
sample_mode=None,
|
47 |
-
eps=1e-8):
|
48 |
-
super(ModulatedConv2d, self).__init__()
|
49 |
-
self.in_channels = in_channels
|
50 |
-
self.out_channels = out_channels
|
51 |
-
self.kernel_size = kernel_size
|
52 |
-
self.demodulate = demodulate
|
53 |
-
self.sample_mode = sample_mode
|
54 |
-
self.eps = eps
|
55 |
-
|
56 |
-
# modulation inside each modulated conv
|
57 |
-
self.modulation = nn.Linear(num_style_feat, in_channels, bias=True)
|
58 |
-
# initialization
|
59 |
-
default_init_weights(self.modulation, scale=1, bias_fill=1, a=0, mode='fan_in', nonlinearity='linear')
|
60 |
-
|
61 |
-
self.weight = nn.Parameter(
|
62 |
-
torch.randn(1, out_channels, in_channels, kernel_size, kernel_size) /
|
63 |
-
math.sqrt(in_channels * kernel_size**2))
|
64 |
-
self.padding = kernel_size // 2
|
65 |
-
|
66 |
-
def forward(self, x, style):
|
67 |
-
"""Forward function.
|
68 |
-
|
69 |
-
Args:
|
70 |
-
x (Tensor): Tensor with shape (b, c, h, w).
|
71 |
-
style (Tensor): Tensor with shape (b, num_style_feat).
|
72 |
-
|
73 |
-
Returns:
|
74 |
-
Tensor: Modulated tensor after convolution.
|
75 |
-
"""
|
76 |
-
b, c, h, w = x.shape # c = c_in
|
77 |
-
# weight modulation
|
78 |
-
style = self.modulation(style).view(b, 1, c, 1, 1)
|
79 |
-
# self.weight: (1, c_out, c_in, k, k); style: (b, 1, c, 1, 1)
|
80 |
-
weight = self.weight * style # (b, c_out, c_in, k, k)
|
81 |
-
|
82 |
-
if self.demodulate:
|
83 |
-
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + self.eps)
|
84 |
-
weight = weight * demod.view(b, self.out_channels, 1, 1, 1)
|
85 |
-
|
86 |
-
weight = weight.view(b * self.out_channels, c, self.kernel_size, self.kernel_size)
|
87 |
-
|
88 |
-
# upsample or downsample if necessary
|
89 |
-
if self.sample_mode == 'upsample':
|
90 |
-
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)
|
91 |
-
elif self.sample_mode == 'downsample':
|
92 |
-
x = F.interpolate(x, scale_factor=0.5, mode='bilinear', align_corners=False)
|
93 |
-
|
94 |
-
b, c, h, w = x.shape
|
95 |
-
x = x.view(1, b * c, h, w)
|
96 |
-
# weight: (b*c_out, c_in, k, k), groups=b
|
97 |
-
out = F.conv2d(x, weight, padding=self.padding, groups=b)
|
98 |
-
out = out.view(b, self.out_channels, *out.shape[2:4])
|
99 |
-
|
100 |
-
return out
|
101 |
-
|
102 |
-
def __repr__(self):
|
103 |
-
return (f'{self.__class__.__name__}(in_channels={self.in_channels}, out_channels={self.out_channels}, '
|
104 |
-
f'kernel_size={self.kernel_size}, demodulate={self.demodulate}, sample_mode={self.sample_mode})')
|
105 |
-
|
106 |
-
|
107 |
-
class StyleConv(nn.Module):
|
108 |
-
"""Style conv used in StyleGAN2.
|
109 |
-
|
110 |
-
Args:
|
111 |
-
in_channels (int): Channel number of the input.
|
112 |
-
out_channels (int): Channel number of the output.
|
113 |
-
kernel_size (int): Size of the convolving kernel.
|
114 |
-
num_style_feat (int): Channel number of style features.
|
115 |
-
demodulate (bool): Whether demodulate in the conv layer. Default: True.
|
116 |
-
sample_mode (str | None): Indicating 'upsample', 'downsample' or None. Default: None.
|
117 |
-
"""
|
118 |
-
|
119 |
-
def __init__(self, in_channels, out_channels, kernel_size, num_style_feat, demodulate=True, sample_mode=None):
|
120 |
-
super(StyleConv, self).__init__()
|
121 |
-
self.modulated_conv = ModulatedConv2d(
|
122 |
-
in_channels, out_channels, kernel_size, num_style_feat, demodulate=demodulate, sample_mode=sample_mode)
|
123 |
-
self.weight = nn.Parameter(torch.zeros(1)) # for noise injection
|
124 |
-
self.bias = nn.Parameter(torch.zeros(1, out_channels, 1, 1))
|
125 |
-
self.activate = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
126 |
-
|
127 |
-
def forward(self, x, style, noise=None):
|
128 |
-
# modulate
|
129 |
-
out = self.modulated_conv(x, style) * 2**0.5 # for conversion
|
130 |
-
# noise injection
|
131 |
-
if noise is None:
|
132 |
-
b, _, h, w = out.shape
|
133 |
-
noise = out.new_empty(b, 1, h, w).normal_()
|
134 |
-
out = out + self.weight * noise
|
135 |
-
# add bias
|
136 |
-
out = out + self.bias
|
137 |
-
# activation
|
138 |
-
out = self.activate(out)
|
139 |
-
return out
|
140 |
-
|
141 |
-
|
142 |
-
class ToRGB(nn.Module):
|
143 |
-
"""To RGB (image space) from features.
|
144 |
-
|
145 |
-
Args:
|
146 |
-
in_channels (int): Channel number of input.
|
147 |
-
num_style_feat (int): Channel number of style features.
|
148 |
-
upsample (bool): Whether to upsample. Default: True.
|
149 |
-
"""
|
150 |
-
|
151 |
-
def __init__(self, in_channels, num_style_feat, upsample=True):
|
152 |
-
super(ToRGB, self).__init__()
|
153 |
-
self.upsample = upsample
|
154 |
-
self.modulated_conv = ModulatedConv2d(
|
155 |
-
in_channels, 3, kernel_size=1, num_style_feat=num_style_feat, demodulate=False, sample_mode=None)
|
156 |
-
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
|
157 |
-
|
158 |
-
def forward(self, x, style, skip=None):
|
159 |
-
"""Forward function.
|
160 |
-
|
161 |
-
Args:
|
162 |
-
x (Tensor): Feature tensor with shape (b, c, h, w).
|
163 |
-
style (Tensor): Tensor with shape (b, num_style_feat).
|
164 |
-
skip (Tensor): Base/skip tensor. Default: None.
|
165 |
-
|
166 |
-
Returns:
|
167 |
-
Tensor: RGB images.
|
168 |
-
"""
|
169 |
-
out = self.modulated_conv(x, style)
|
170 |
-
out = out + self.bias
|
171 |
-
if skip is not None:
|
172 |
-
if self.upsample:
|
173 |
-
skip = F.interpolate(skip, scale_factor=2, mode='bilinear', align_corners=False)
|
174 |
-
out = out + skip
|
175 |
-
return out
|
176 |
-
|
177 |
-
|
178 |
-
class ConstantInput(nn.Module):
|
179 |
-
"""Constant input.
|
180 |
-
|
181 |
-
Args:
|
182 |
-
num_channel (int): Channel number of constant input.
|
183 |
-
size (int): Spatial size of constant input.
|
184 |
-
"""
|
185 |
-
|
186 |
-
def __init__(self, num_channel, size):
|
187 |
-
super(ConstantInput, self).__init__()
|
188 |
-
self.weight = nn.Parameter(torch.randn(1, num_channel, size, size))
|
189 |
-
|
190 |
-
def forward(self, batch):
|
191 |
-
out = self.weight.repeat(batch, 1, 1, 1)
|
192 |
-
return out
|
193 |
-
|
194 |
-
|
195 |
-
@ARCH_REGISTRY.register()
|
196 |
-
class StyleGAN2GeneratorClean(nn.Module):
|
197 |
-
"""Clean version of StyleGAN2 Generator.
|
198 |
-
|
199 |
-
Args:
|
200 |
-
out_size (int): The spatial size of outputs.
|
201 |
-
num_style_feat (int): Channel number of style features. Default: 512.
|
202 |
-
num_mlp (int): Layer number of MLP style layers. Default: 8.
|
203 |
-
channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
|
204 |
-
narrow (float): Narrow ratio for channels. Default: 1.0.
|
205 |
-
"""
|
206 |
-
|
207 |
-
def __init__(self, out_size, num_style_feat=512, num_mlp=8, channel_multiplier=2, narrow=1):
|
208 |
-
super(StyleGAN2GeneratorClean, self).__init__()
|
209 |
-
# Style MLP layers
|
210 |
-
self.num_style_feat = num_style_feat
|
211 |
-
style_mlp_layers = [NormStyleCode()]
|
212 |
-
for i in range(num_mlp):
|
213 |
-
style_mlp_layers.extend(
|
214 |
-
[nn.Linear(num_style_feat, num_style_feat, bias=True),
|
215 |
-
nn.LeakyReLU(negative_slope=0.2, inplace=True)])
|
216 |
-
self.style_mlp = nn.Sequential(*style_mlp_layers)
|
217 |
-
# initialization
|
218 |
-
default_init_weights(self.style_mlp, scale=1, bias_fill=0, a=0.2, mode='fan_in', nonlinearity='leaky_relu')
|
219 |
-
|
220 |
-
# channel list
|
221 |
-
channels = {
|
222 |
-
'4': int(512 * narrow),
|
223 |
-
'8': int(512 * narrow),
|
224 |
-
'16': int(512 * narrow),
|
225 |
-
'32': int(512 * narrow),
|
226 |
-
'64': int(256 * channel_multiplier * narrow),
|
227 |
-
'128': int(128 * channel_multiplier * narrow),
|
228 |
-
'256': int(64 * channel_multiplier * narrow),
|
229 |
-
'512': int(32 * channel_multiplier * narrow),
|
230 |
-
'1024': int(16 * channel_multiplier * narrow)
|
231 |
-
}
|
232 |
-
self.channels = channels
|
233 |
-
|
234 |
-
self.constant_input = ConstantInput(channels['4'], size=4)
|
235 |
-
self.style_conv1 = StyleConv(
|
236 |
-
channels['4'],
|
237 |
-
channels['4'],
|
238 |
-
kernel_size=3,
|
239 |
-
num_style_feat=num_style_feat,
|
240 |
-
demodulate=True,
|
241 |
-
sample_mode=None)
|
242 |
-
self.to_rgb1 = ToRGB(channels['4'], num_style_feat, upsample=False)
|
243 |
-
|
244 |
-
self.log_size = int(math.log(out_size, 2))
|
245 |
-
self.num_layers = (self.log_size - 2) * 2 + 1
|
246 |
-
self.num_latent = self.log_size * 2 - 2
|
247 |
-
|
248 |
-
self.style_convs = nn.ModuleList()
|
249 |
-
self.to_rgbs = nn.ModuleList()
|
250 |
-
self.noises = nn.Module()
|
251 |
-
|
252 |
-
in_channels = channels['4']
|
253 |
-
# noise
|
254 |
-
for layer_idx in range(self.num_layers):
|
255 |
-
resolution = 2**((layer_idx + 5) // 2)
|
256 |
-
shape = [1, 1, resolution, resolution]
|
257 |
-
self.noises.register_buffer(f'noise{layer_idx}', torch.randn(*shape))
|
258 |
-
# style convs and to_rgbs
|
259 |
-
for i in range(3, self.log_size + 1):
|
260 |
-
out_channels = channels[f'{2**i}']
|
261 |
-
self.style_convs.append(
|
262 |
-
StyleConv(
|
263 |
-
in_channels,
|
264 |
-
out_channels,
|
265 |
-
kernel_size=3,
|
266 |
-
num_style_feat=num_style_feat,
|
267 |
-
demodulate=True,
|
268 |
-
sample_mode='upsample'))
|
269 |
-
self.style_convs.append(
|
270 |
-
StyleConv(
|
271 |
-
out_channels,
|
272 |
-
out_channels,
|
273 |
-
kernel_size=3,
|
274 |
-
num_style_feat=num_style_feat,
|
275 |
-
demodulate=True,
|
276 |
-
sample_mode=None))
|
277 |
-
self.to_rgbs.append(ToRGB(out_channels, num_style_feat, upsample=True))
|
278 |
-
in_channels = out_channels
|
279 |
-
|
280 |
-
def make_noise(self):
|
281 |
-
"""Make noise for noise injection."""
|
282 |
-
device = self.constant_input.weight.device
|
283 |
-
noises = [torch.randn(1, 1, 4, 4, device=device)]
|
284 |
-
|
285 |
-
for i in range(3, self.log_size + 1):
|
286 |
-
for _ in range(2):
|
287 |
-
noises.append(torch.randn(1, 1, 2**i, 2**i, device=device))
|
288 |
-
|
289 |
-
return noises
|
290 |
-
|
291 |
-
def get_latent(self, x):
|
292 |
-
return self.style_mlp(x)
|
293 |
-
|
294 |
-
def mean_latent(self, num_latent):
|
295 |
-
latent_in = torch.randn(num_latent, self.num_style_feat, device=self.constant_input.weight.device)
|
296 |
-
latent = self.style_mlp(latent_in).mean(0, keepdim=True)
|
297 |
-
return latent
|
298 |
-
|
299 |
-
def forward(self,
|
300 |
-
styles,
|
301 |
-
input_is_latent=False,
|
302 |
-
noise=None,
|
303 |
-
randomize_noise=True,
|
304 |
-
truncation=1,
|
305 |
-
truncation_latent=None,
|
306 |
-
inject_index=None,
|
307 |
-
return_latents=False):
|
308 |
-
"""Forward function for StyleGAN2GeneratorClean.
|
309 |
-
|
310 |
-
Args:
|
311 |
-
styles (list[Tensor]): Sample codes of styles.
|
312 |
-
input_is_latent (bool): Whether input is latent style. Default: False.
|
313 |
-
noise (Tensor | None): Input noise or None. Default: None.
|
314 |
-
randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True.
|
315 |
-
truncation (float): The truncation ratio. Default: 1.
|
316 |
-
truncation_latent (Tensor | None): The truncation latent tensor. Default: None.
|
317 |
-
inject_index (int | None): The injection index for mixing noise. Default: None.
|
318 |
-
return_latents (bool): Whether to return style latents. Default: False.
|
319 |
-
"""
|
320 |
-
# style codes -> latents with Style MLP layer
|
321 |
-
if not input_is_latent:
|
322 |
-
styles = [self.style_mlp(s) for s in styles]
|
323 |
-
# noises
|
324 |
-
if noise is None:
|
325 |
-
if randomize_noise:
|
326 |
-
noise = [None] * self.num_layers # for each style conv layer
|
327 |
-
else: # use the stored noise
|
328 |
-
noise = [getattr(self.noises, f'noise{i}') for i in range(self.num_layers)]
|
329 |
-
# style truncation
|
330 |
-
if truncation < 1:
|
331 |
-
style_truncation = []
|
332 |
-
for style in styles:
|
333 |
-
style_truncation.append(truncation_latent + truncation * (style - truncation_latent))
|
334 |
-
styles = style_truncation
|
335 |
-
# get style latents with injection
|
336 |
-
if len(styles) == 1:
|
337 |
-
inject_index = self.num_latent
|
338 |
-
|
339 |
-
if styles[0].ndim < 3:
|
340 |
-
# repeat latent code for all the layers
|
341 |
-
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
|
342 |
-
else: # used for encoder with different latent code for each layer
|
343 |
-
latent = styles[0]
|
344 |
-
elif len(styles) == 2: # mixing noises
|
345 |
-
if inject_index is None:
|
346 |
-
inject_index = random.randint(1, self.num_latent - 1)
|
347 |
-
latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
|
348 |
-
latent2 = styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1)
|
349 |
-
latent = torch.cat([latent1, latent2], 1)
|
350 |
-
|
351 |
-
# main generation
|
352 |
-
out = self.constant_input(latent.shape[0])
|
353 |
-
out = self.style_conv1(out, latent[:, 0], noise=noise[0])
|
354 |
-
skip = self.to_rgb1(out, latent[:, 1])
|
355 |
-
|
356 |
-
i = 1
|
357 |
-
for conv1, conv2, noise1, noise2, to_rgb in zip(self.style_convs[::2], self.style_convs[1::2], noise[1::2],
|
358 |
-
noise[2::2], self.to_rgbs):
|
359 |
-
out = conv1(out, latent[:, i], noise=noise1)
|
360 |
-
out = conv2(out, latent[:, i + 1], noise=noise2)
|
361 |
-
skip = to_rgb(out, latent[:, i + 2], skip) # feature back to the rgb space
|
362 |
-
i += 2
|
363 |
-
|
364 |
-
image = skip
|
365 |
-
|
366 |
-
if return_latents:
|
367 |
-
return image, latent
|
368 |
-
else:
|
369 |
-
return image, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|