from transformers import MllamaForConditionalGeneration, AutoProcessor, TextIteratorStreamer from PIL import Image import requests import torch from threading import Thread import gradio as gr from gradio import FileData import time import spaces import re ckpt = "Xkev/Llama-3.2V-11B-cot" model = MllamaForConditionalGeneration.from_pretrained(ckpt, torch_dtype=torch.bfloat16).to("cuda") processor = AutoProcessor.from_pretrained(ckpt) @spaces.GPU def bot_streaming(message, history, max_new_tokens=250): txt = message["text"] ext_buffer = f"{txt}" messages= [] images = [] for i, msg in enumerate(history): if isinstance(msg[0], tuple): messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "image"}]}) messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]}) images.append(Image.open(msg[0][0]).convert("RGB")) elif isinstance(history[i-1], tuple) and isinstance(msg[0], str): # messages are already handled pass elif isinstance(history[i-1][0], str) and isinstance(msg[0], str): # text only turn messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]}) messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]}) # add current message if len(message["files"]) == 1: if isinstance(message["files"][0], str): # examples image = Image.open(message["files"][0]).convert("RGB") else: # regular input image = Image.open(message["files"][0]["path"]).convert("RGB") images.append(image) messages.append({"role": "user", "content": [{"type": "text", "text": txt}, {"type": "image"}]}) else: messages.append({"role": "user", "content": [{"type": "text", "text": txt}]}) texts = processor.apply_chat_template(messages, add_generation_prompt=True) if images == []: inputs = processor(text=texts, return_tensors="pt").to("cuda") else: inputs = processor(text=texts, images=images, return_tensors="pt").to("cuda") streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True) generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens) generated_text = "" thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() buffer = "" for new_text in streamer: buffer += new_text generated_text_without_prompt = buffer time.sleep(0.01) buffer = re.sub(r"<(\w+)>", r"(Here begins the \1 stage)", buffer) buffer = re.sub(r"", r"(Here ends the \1 stage)", buffer) yield buffer demo = gr.ChatInterface(fn=bot_streaming, title="LLaVA-CoT", textbox=gr.MultimodalTextbox(), additional_inputs = [gr.Slider( minimum=512, maximum=1024, value=512, step=1, label="Maximum number of new tokens to generate", ) ], cache_examples=False, description="Upload an image, and start chatting about it. To learn more about LLaVA-CoT, visit [oir GitHub page](https://github.com/PKU-YuanGroup/LLaVA-CoT). Note: Since Gradio currently does not support displaying the special markings in the output, we have replaced it with the expression (Here begins the X phase).", stop_btn="Stop Generation", fill_height=True, multimodal=True) demo.launch(debug=True)