File size: 11,970 Bytes
5e51e36 9e4b8f5 5e51e36 9e4b8f5 5e51e36 9e4b8f5 5e51e36 9e4b8f5 5e51e36 9e4b8f5 5e51e36 16dd690 5e51e36 9e4b8f5 5e51e36 9e4b8f5 5e51e36 9e4b8f5 5e51e36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions']
import gradio as gr
import pandas as pd
# Constants
# =========
# Disciplines
DISCIPLINES = [
"Art & Sports",
"Business",
"Science",
"Health & Medicine",
"Embodied Tasks",
"Tech & Engineering",
"Game"
]
# Model Information Columns
MODEL_INFO = [
"Model Name (clickable)"
]
# Column Names for DataFrame
COLUMN_NAMES = MODEL_INFO + DISCIPLINES
# Data Types for DataFrame
DATA_TITILE_TYPE = ['markdown'] + ['number'] * len(DISCIPLINES)
# Leaderboard Introduction
LEADERBOARD_INTRODUCTION = """# MMWorld Leaderboard
*"Towards Multi-discipline Multi-faceted World Model Evaluation in Videos"*
๐ Welcome to the leaderboard of the **MMWorld**! ๐ฆ *A new benchmark for multi-discipline, multi-faceted multimodal video understanding*
<div style="display: flex; flex-wrap: wrap; align-items: center; gap: 10px;">
<a href='https://github.com/eric-ai-lab/MMWorld'>
<img src='https://img.shields.io/badge/Code-GitHub-black?logo=github'>
</a>
<a href='https://arxiv.org/abs/2406.08407'>
<img src='https://img.shields.io/badge/cs.CV-Paper-b31b1b?logo=arxiv&logoColor=red'>
</a>
<a href='https://mmworld-bench.github.io/'>
<img src='https://img.shields.io/badge/MMWorld-Website-green?logo=internet-explorer&logoColor=blue'>
</a>
</div>
"""
SUBMIT_INTRODUCTION = """# Submit on MMWorld Benchmark Introduction
## ๐ Please obtain the evaluation file `*.json` by running MMWorld in Github and upload the json file below.
โ ๏ธ The contact information you filled in will not be made public.
"""
TABLE_INTRODUCTION = """
The MMWorld Leaderboard showcases the performance of various models across different disciplines. Select the disciplines you're interested in to see how models perform in those areas.
"""
LEADERBOARD_INFO = """
Multimodal Language Language Models (MLLMs) demonstrate the emerging abilities of "world models"โinterpreting and reasoning about complex real-world dynamics. To assess these abilities, we posit videos are the ideal medium, as they
encapsulate rich representations of real-world dynamics and causalities. To this end, we introduce MMWorld, a new benchmark for multi-discipline, multi-faceted multimodal video understanding. MMWorld distinguishes itself from previous
video understanding benchmarks with two unique advantages: (1) multi-discipline, covering various disciplines that often require domain expertise for comprehensive understanding; (2) multi-faceted reasoning, including explanation, counterfactual
thinking, future prediction, etc. MMWorld consists of a human-annotated dataset to evaluate MLLMs with questions about the whole videos and a synthetic dataset to analyze MLLMs within a single modality of perception.
"""
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
CITATION_BUTTON_TEXT = r"""@misc{he2024mmworld,
title={MMWorld: Towards Multi-discipline Multi-faceted World Model Evaluation in Videos},
author={Xuehai He and Weixi Feng and Kaizhi Zheng and Yujie Lu and Wanrong Zhu and Jiachen Li and Yue Fan and Jianfeng Wang and Linjie Li and Zhengyuan Yang and Kevin Lin and William Yang Wang and Lijuan Wang and Xin Eric Wang},
year={2024},
eprint={2406.08407},
archivePrefix={arXiv},
primaryClass={cs.CV}
}"""
# Data: Models and their scores
data = {
"Model Name (clickable)": [
"Random Choice",
"GPT-4o",
"Claude 3.5 Sonnet",
"GPT-4V",
"Gemini 1.5 Pro",
"Video-LLaVA-7B",
"Video-Chat-7B",
"ChatUnivi-7B",
"mPLUG-Owl-7B",
"VideoChatGPT-7B",
"PandaGPT-7B",
"ImageBind-LLM-7B",
"X-Instruct-BLIP-7B",
"LWM-1M-JAX",
"Otter-7B",
"Video-LLaMA-2-13B"
],
"Art & Sports": [25.03, 47.87, 54.58, 36.17, 37.12, 35.91, 39.53, 24.47, 29.16, 26.84, 25.33, 24.82, 21.08, 12.04, 17.12, 6.15],
"Business": [25.09, 91.14, 63.87, 81.59, 76.69, 51.28, 51.05, 60.84, 64.10, 39.16, 42.66, 42.66, 15.85, 17.48, 18.65, 21.21],
"Science": [26.44, 73.78, 59.85, 66.52, 62.81, 56.30, 30.81, 52.00, 47.41, 36.45, 39.41, 32.15, 22.52, 15.41, 9.33, 22.22],
"Health & Medicine": [25.00, 83.33, 54.51, 73.61, 76.74, 32.64, 46.18, 61.11, 60.07, 53.12, 38.54, 30.21, 28.47, 20.49, 6.94, 31.25],
"Embodied Tasks": [26.48, 62.94, 30.99, 55.48, 43.59, 63.17, 40.56, 46.15, 23.78, 36.60, 35.43, 46.85, 18.41, 25.87, 13.29, 15.38],
"Tech & Engineering": [30.92, 75.53, 58.87, 61.35, 69.86, 58.16, 39.36, 56.74, 41.84, 41.49, 41.84, 41.49, 22.34, 21.99, 15.96, 19.15],
"Game": [25.23, 80.32, 59.44, 73.49, 66.27, 49.00, 44.98, 52.61, 62.25, 36.55, 40.16, 41.37, 26.10, 11.65, 15.26, 24.90]
}
# Create DataFrame
df_full = pd.DataFrame(data)
# Function to get leaderboard DataFrame based on selected disciplines
def get_leaderboard_df(selected_disciplines):
if not selected_disciplines:
selected_disciplines = DISCIPLINES # If none selected, default to all
# Copy the full DataFrame
df = df_full.copy()
# Select columns to display
columns_to_display = MODEL_INFO + selected_disciplines
df = df[columns_to_display]
return df
# Function to convert scores to two decimal places
def convert_scores_to_percentage(df):
for column in df.columns[1:]:
df[column] = df[column].round(2)
return df
# Gradio app
block = gr.Blocks()
with block:
gr.Markdown(
LEADERBOARD_INTRODUCTION
)
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("๐ MMWorld", elem_id="mmworld-tab-table", id=1):
with gr.Row():
with gr.Accordion("Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
lines=14,
)
gr.Markdown(
TABLE_INTRODUCTION
)
with gr.Row():
with gr.Column(scale=0.2):
select_all_button = gr.Button("Select All")
deselect_all_button = gr.Button("Deselect All")
with gr.Column(scale=0.8):
# Selection for disciplines
checkbox_group = gr.CheckboxGroup(
choices=DISCIPLINES,
value=DISCIPLINES, # All disciplines selected by default
label="Evaluation discipline",
interactive=True,
)
# Initial DataFrame
initial_df = get_leaderboard_df(DISCIPLINES)
initial_df = convert_scores_to_percentage(initial_df)
data_component = gr.Dataframe(
value=initial_df,
headers=COLUMN_NAMES,
type="pandas",
datatype=DATA_TITILE_TYPE,
interactive=False,
visible=True,
height=700,
)
# Callbacks for buttons and checkbox changes
def update_table(selected_disciplines):
updated_df = get_leaderboard_df(selected_disciplines)
updated_df = convert_scores_to_percentage(updated_df)
return updated_df
select_all_button.click(
fn=lambda: gr.update(value=DISCIPLINES),
inputs=None,
outputs=checkbox_group
).then(
fn=update_table,
inputs=checkbox_group,
outputs=data_component
)
deselect_all_button.click(
fn=lambda: gr.update(value=[]),
inputs=None,
outputs=checkbox_group
).then(
fn=update_table,
inputs=checkbox_group,
outputs=data_component
)
checkbox_group.change(
fn=update_table,
inputs=checkbox_group,
outputs=data_component
)
# About Tab
with gr.TabItem("๐ About", elem_id="mmworld-table", id=2):
gr.Markdown(LEADERBOARD_INFO, elem_classes="markdown-text")
# Submit Tab
with gr.TabItem("๐ Submit here!", elem_id="mmworld-tab-table", id=3):
gr.Markdown(LEADERBOARD_INTRODUCTION, elem_classes="markdown-text")
with gr.Row():
gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text")
with gr.Row():
gr.Markdown("# โ๏ธโจ Submit your model evaluation JSON file here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(
label="Model name", placeholder="Required field"
)
revision_name_textbox = gr.Textbox(
label="Revision Model Name (Optional)", placeholder="GPT4V"
)
with gr.Column():
model_link = gr.Textbox(
label="Project Page/Paper Link", placeholder="Required field"
)
team_name = gr.Textbox(
label="Your Team Name (If left blank, it will be user upload)", placeholder="User Upload"
)
contact_email = gr.Textbox(
label="E-Mail (Will not be displayed)", placeholder="Required field"
)
with gr.Column():
input_file = gr.File(label="Click to Upload a ZIP File", file_count="single", type='binary')
submit_button = gr.Button("Submit Eval")
submit_succ_button = gr.Markdown("Submit Success! Please press refresh and return to LeaderBoard!", visible=False)
fail_textbox = gr.Markdown('<span style="color:red;">Please ensure that the `Model Name`, `Project Page`, and `Email` are filled in correctly.</span>', elem_classes="markdown-text", visible=False)
submission_result = gr.Markdown()
# Placeholder function for submission
def add_new_eval(
input_file,
model_name_textbox: str,
revision_name_textbox: str,
model_link: str,
team_name: str,
contact_email: str
):
if input_file is None:
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=True)
if model_link == '' or model_name_textbox == '' or contact_email == '':
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=True)
# Process the uploaded file and submission details here
# For now, we just simulate a successful submission
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
submit_button.click(
add_new_eval,
inputs=[
input_file,
model_name_textbox,
revision_name_textbox,
model_link,
team_name,
contact_email
],
outputs=[submit_button, submit_succ_button, fail_textbox]
)
def refresh_data():
value1 = get_leaderboard_df(DISCIPLINES)
value1 = convert_scores_to_percentage(value1)
return value1
with gr.Row():
data_run = gr.Button("Refresh")
data_run.click(fn=refresh_data, inputs=None, outputs=data_component)
block.launch()
|