HumanLikeness / main_backend.py
XufengDuan's picture
update scripts
2a968dc
import argparse
import logging
import pprint
import os
from huggingface_hub import snapshot_download
import src.backend.run_eval_suite as run_eval_suite
import src.backend.manage_requests as manage_requests
import src.backend.sort_queue as sort_queue
import src.envs as envs
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'
logging.basicConfig(level=logging.ERROR)
pp = pprint.PrettyPrinter(width=80)
PENDING_STATUS = "PENDING"
RUNNING_STATUS = "RUNNING"
FINISHED_STATUS = "FINISHED"
FAILED_STATUS = "FAILED"
# import os
snapshot_download(repo_id=envs.RESULTS_REPO, revision="main",
local_dir=envs.EVAL_RESULTS_PATH_BACKEND, repo_type="dataset", max_workers=60)
snapshot_download(repo_id=envs.QUEUE_REPO, revision="main",
local_dir=envs.EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60)
# exit()
# def run_auto_eval(args):
# if not args.reproduce:
# current_pending_status = [PENDING_STATUS]
# print('_________________')
# manage_requests.check_completed_evals(
# api=envs.API,
# checked_status=RUNNING_STATUS,
# completed_status=FINISHED_STATUS,
# failed_status=FAILED_STATUS,
# hf_repo=envs.QUEUE_REPO,
# local_dir=envs.EVAL_REQUESTS_PATH_BACKEND,
# hf_repo_results=envs.RESULTS_REPO,
# local_dir_results=envs.EVAL_RESULTS_PATH_BACKEND
# )
# logging.info("Checked completed evals")
# eval_requests = manage_requests.get_eval_requests(job_status=current_pending_status,
# hf_repo=envs.QUEUE_REPO,
# local_dir=envs.EVAL_REQUESTS_PATH_BACKEND)
# logging.info("Got eval requests")
# eval_requests = sort_queue.sort_models_by_priority(api=envs.API, models=eval_requests)
# logging.info("Sorted eval requests")
#
# print(f"Found {len(eval_requests)} {','.join(current_pending_status)} eval requests")
# print(eval_requests)
# if len(eval_requests) == 0:
# print("No eval requests found. Exiting.")
# return
#
# if args.model is not None:
# eval_request = manage_requests.EvalRequest(
# model=args.model,
# status=PENDING_STATUS,
# precision=args.precision
# )
# pp.pprint(eval_request)
# else:
# eval_request = eval_requests[0]
# pp.pprint(eval_request)
#
# # manage_requests.set_eval_request(
# # api=envs.API,
# # eval_request=eval_request,
# # new_status=RUNNING_STATUS,
# # hf_repo=envs.QUEUE_REPO,
# # local_dir=envs.EVAL_REQUESTS_PATH_BACKEND
# # )
# # logging.info("Set eval request to running, now running eval")
#
# run_eval_suite.run_evaluation(
# eval_request=eval_request,
# local_dir=envs.EVAL_RESULTS_PATH_BACKEND,
# results_repo=envs.RESULTS_REPO,
# batch_size=1,
# device=envs.DEVICE,
# no_cache=True,
# need_check=not args.publish,
# write_results=args.update
# )
# logging.info("Eval finished, now setting status to finished")
# else:
# eval_request = manage_requests.EvalRequest(
# model=args.model,
# status=PENDING_STATUS,
# precision=args.precision
# )
# pp.pprint(eval_request)
# logging.info("Running reproducibility eval")
#
# run_eval_suite.run_evaluation(
# eval_request=eval_request,
# local_dir=envs.EVAL_RESULTS_PATH_BACKEND,
# results_repo=envs.RESULTS_REPO,
# batch_size=1,
# device=envs.DEVICE,
# need_check=not args.publish,
# write_results=args.update
# )
# logging.info("Reproducibility eval finished")
def run_auto_eval(args):
if not args.reproduce:
current_pending_status = [PENDING_STATUS]
print('_________________')
manage_requests.check_completed_evals(
api=envs.API,
checked_status=RUNNING_STATUS,
completed_status=FINISHED_STATUS,
failed_status=FAILED_STATUS,
hf_repo=envs.QUEUE_REPO,
local_dir=envs.EVAL_REQUESTS_PATH_BACKEND,
hf_repo_results=envs.RESULTS_REPO,
local_dir_results=envs.EVAL_RESULTS_PATH_BACKEND
)
logging.info("Checked completed evals")
eval_requests = manage_requests.get_eval_requests(
job_status=current_pending_status,
hf_repo=envs.QUEUE_REPO,
local_dir=envs.EVAL_REQUESTS_PATH_BACKEND
)
logging.info("Got eval requests")
eval_requests = sort_queue.sort_models_by_priority(api=envs.API, models=eval_requests)
logging.info("Sorted eval requests")
print(f"Found {len(eval_requests)} {','.join(current_pending_status)} eval requests")
if len(eval_requests) == 0:
print("No eval requests found. Exiting.")
return
for eval_request in eval_requests:
pp.pprint(eval_request)
run_eval_suite.run_evaluation(
eval_request=eval_request,
local_dir=envs.EVAL_RESULTS_PATH_BACKEND,
results_repo=envs.RESULTS_REPO,
batch_size=1,
device=envs.DEVICE,
no_cache=True,
need_check=not args.publish,
write_results=args.update
)
logging.info(f"Eval finished for model {eval_request.model}, now setting status to finished")
# Update the status to FINISHED
manage_requests.set_eval_request(
api=envs.API,
eval_request=eval_request,
new_status=FINISHED_STATUS,
hf_repo=envs.QUEUE_REPO,
local_dir=envs.EVAL_REQUESTS_PATH_BACKEND
)
else:
eval_request = manage_requests.EvalRequest(
model=args.model,
status=PENDING_STATUS,
precision=args.precision
)
pp.pprint(eval_request)
logging.info("Running reproducibility eval")
run_eval_suite.run_evaluation(
eval_request=eval_request,
local_dir=envs.EVAL_RESULTS_PATH_BACKEND,
results_repo=envs.RESULTS_REPO,
batch_size=1,
device=envs.DEVICE,
need_check=not args.publish,
write_results=args.update
)
logging.info("Reproducibility eval finished")
def main():
parser = argparse.ArgumentParser(description="Run auto evaluation with optional reproducibility feature")
# Optional arguments
parser.add_argument("--reproduce", type=bool, default=False, help="Reproduce the evaluation results")
parser.add_argument("--model", type=str, default=None, help="Your Model ID")
parser.add_argument("--precision", type=str, default="float16", help="Precision of your model")
parser.add_argument("--publish", type=bool, default=True, help="whether directly publish the evaluation results on HF")
parser.add_argument("--update", type=bool, default=False, help="whether to update google drive files")
args = parser.parse_args()
run_auto_eval(args)
if __name__ == "__main__":
main()