XufengDuan commited on
Commit
0e2fd0d
·
1 Parent(s): e1b4714

updated scripts

Browse files
Files changed (6) hide show
  1. src/Makefile +13 -0
  2. src/README.md +47 -0
  3. src/app.py +329 -0
  4. src/main_backend.py +126 -0
  5. src/pyproject.toml +13 -0
  6. src/requirements.txt +17 -0
src/Makefile ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .PHONY: style format
2
+
3
+
4
+ style:
5
+ python -m black --line-length 119 .
6
+ python -m isort .
7
+ ruff check --fix .
8
+
9
+
10
+ quality:
11
+ python -m black --check --line-length 119 .
12
+ python -m isort --check-only .
13
+ ruff check .
src/README.md ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Humanlike Evaluation Leaderboard
3
+ emoji: 🥇
4
+ colorFrom: blue
5
+ colorTo: indigo
6
+ sdk: gradio
7
+ sdk_version: 4.37.1
8
+ app_file: app.py
9
+ pinned: true
10
+ license: apache-2.0
11
+ tags:
12
+ - leaderboard
13
+ models:
14
+ - google/gemma-2-9b
15
+ ---
16
+
17
+
18
+ python>3.10
19
+ pip spacy
20
+ python -m spacy download en_core_web_sm
21
+ pip install google.generativeai
22
+ python -m spacy download en_core_web_trf
23
+
24
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
25
+
26
+ Most of the variables to change for a default leaderboard are in env (replace the path for your leaderboard) and src/display/about.
27
+
28
+ Results files should have the following format:
29
+ ```
30
+ {
31
+ "config": {
32
+ "model_dtype": "torch.float16", # or torch.bfloat16 or 8bit or 4bit
33
+ "model_name": "path of the model on the hub: org/model",
34
+ "model_sha": "revision on the hub",
35
+ },
36
+ "results": {
37
+ "task_name": {
38
+ "metric_name": score,
39
+ },
40
+ "task_name2": {
41
+ "metric_name": score,
42
+ }
43
+ }
44
+ }
45
+ ```
46
+
47
+ Request files are created automatically by this tool.
src/app.py ADDED
@@ -0,0 +1,329 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import pandas as pd
3
+ from apscheduler.schedulers.background import BackgroundScheduler
4
+ from huggingface_hub import snapshot_download
5
+
6
+ import src.display.about as about
7
+ from src.display.css_html_js import custom_css
8
+ import src.display.utils as utils
9
+ import src.envs as envs
10
+ import src.populate as populate
11
+ import src.submission.submit as submit
12
+ import os
13
+ TOKEN = os.environ.get("HF_TOKEN", None)
14
+ print("TOKEN", TOKEN)
15
+ def restart_space():
16
+ envs.API.restart_space(repo_id=envs.REPO_ID, token=TOKEN)
17
+
18
+ try:
19
+ print(envs.EVAL_REQUESTS_PATH)
20
+ snapshot_download(
21
+ repo_id=envs.QUEUE_REPO, local_dir=envs.EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
22
+ )
23
+ except Exception:
24
+ restart_space()
25
+ try:
26
+ print(envs.EVAL_RESULTS_PATH)
27
+ snapshot_download(
28
+ repo_id=envs.RESULTS_REPO, local_dir=envs.EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
29
+ )
30
+ except Exception:
31
+ restart_space()
32
+
33
+ raw_data, original_df = populate.get_leaderboard_df(envs.EVAL_RESULTS_PATH, envs.EVAL_REQUESTS_PATH, utils.COLS, utils.BENCHMARK_COLS)
34
+ leaderboard_df = original_df.copy()
35
+
36
+ (
37
+ finished_eval_queue_df,
38
+ running_eval_queue_df,
39
+ pending_eval_queue_df,
40
+ ) = populate.get_evaluation_queue_df(envs.EVAL_REQUESTS_PATH, utils.EVAL_COLS)
41
+
42
+
43
+ # Searching and filtering
44
+ def update_table(
45
+ hidden_df: pd.DataFrame,
46
+ columns: list,
47
+ type_query: list,
48
+ precision_query: str,
49
+ size_query: list,
50
+ show_deleted: bool,
51
+ query: str,
52
+ ):
53
+ filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
54
+ filtered_df = filter_queries(query, filtered_df)
55
+ df = select_columns(filtered_df, columns)
56
+ return df
57
+
58
+
59
+ def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
60
+ return df[(df[utils.AutoEvalColumn.dummy.name].str.contains(query, case=False))]
61
+
62
+
63
+ def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
64
+ always_here_cols = [
65
+ utils.AutoEvalColumn.model_type_symbol.name,
66
+ utils.AutoEvalColumn.model.name,
67
+ ]
68
+ # We use COLS to maintain sorting
69
+ filtered_df = df[
70
+ always_here_cols + [c for c in utils.COLS if c in df.columns and c in columns] + [utils.AutoEvalColumn.dummy.name]
71
+ ]
72
+ return filtered_df
73
+
74
+
75
+ def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
76
+ final_df = []
77
+ if query != "":
78
+ queries = [q.strip() for q in query.split(";")]
79
+ for _q in queries:
80
+ _q = _q.strip()
81
+ if _q != "":
82
+ temp_filtered_df = search_table(filtered_df, _q)
83
+ if len(temp_filtered_df) > 0:
84
+ final_df.append(temp_filtered_df)
85
+ if len(final_df) > 0:
86
+ filtered_df = pd.concat(final_df)
87
+ filtered_df = filtered_df.drop_duplicates(
88
+ subset=[utils.AutoEvalColumn.model.name, utils.AutoEvalColumn.precision.name, utils.AutoEvalColumn.revision.name]
89
+ )
90
+
91
+ return filtered_df
92
+
93
+
94
+ def filter_models(
95
+ df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
96
+ ) -> pd.DataFrame:
97
+ # Show all models
98
+ # if show_deleted:
99
+ # filtered_df = df
100
+ # else: # Show only still on the hub models
101
+ # filtered_df = df[df[utils.AutoEvalColumn.still_on_hub.name]]
102
+
103
+ filtered_df = df
104
+
105
+ type_emoji = [t[0] for t in type_query]
106
+ filtered_df = filtered_df.loc[df[utils.AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
107
+ filtered_df = filtered_df.loc[df[utils.AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
108
+
109
+ numeric_interval = pd.IntervalIndex(sorted([utils.NUMERIC_INTERVALS[s] for s in size_query]))
110
+ params_column = pd.to_numeric(df[utils.AutoEvalColumn.params.name], errors="coerce")
111
+ mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
112
+ filtered_df = filtered_df.loc[mask]
113
+
114
+ return filtered_df
115
+
116
+
117
+ demo = gr.Blocks(css=custom_css)
118
+ with demo:
119
+ gr.HTML(about.TITLE)
120
+ gr.Markdown(about.INTRODUCTION_TEXT, elem_classes="markdown-text")
121
+
122
+ with gr.Tabs(elem_classes="tab-buttons") as tabs:
123
+ with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
124
+ with gr.Row():
125
+ with gr.Column():
126
+ with gr.Row():
127
+ search_bar = gr.Textbox(
128
+ placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
129
+ show_label=False,
130
+ elem_id="search-bar",
131
+ )
132
+ with gr.Row():
133
+ shown_columns = gr.CheckboxGroup(
134
+ choices=[
135
+ c.name
136
+ for c in utils.fields(utils.AutoEvalColumn)
137
+ if not c.hidden and not c.never_hidden and not c.dummy
138
+ ],
139
+ value=[
140
+ c.name
141
+ for c in utils.fields(utils.AutoEvalColumn)
142
+ if c.displayed_by_default and not c.hidden and not c.never_hidden
143
+ ],
144
+ label="Select columns to show",
145
+ elem_id="column-select",
146
+ interactive=True,
147
+ )
148
+ with gr.Row():
149
+ deleted_models_visibility = gr.Checkbox(
150
+ value=False, label="Show gated/private/deleted models", interactive=True
151
+ )
152
+ with gr.Column(min_width=320):
153
+ #with gr.Box(elem_id="box-filter"):
154
+ filter_columns_type = gr.CheckboxGroup(
155
+ label="Model types",
156
+ choices=[t.to_str() for t in utils.ModelType],
157
+ value=[t.to_str() for t in utils.ModelType],
158
+ interactive=True,
159
+ elem_id="filter-columns-type",
160
+ )
161
+ filter_columns_precision = gr.CheckboxGroup(
162
+ label="Precision",
163
+ choices=[i.value.name for i in utils.Precision],
164
+ value=[i.value.name for i in utils.Precision],
165
+ interactive=True,
166
+ elem_id="filter-columns-precision",
167
+ )
168
+ filter_columns_size = gr.CheckboxGroup(
169
+ label="Model sizes (in billions of parameters)",
170
+ choices=list(utils.NUMERIC_INTERVALS.keys()),
171
+ value=list(utils.NUMERIC_INTERVALS.keys()),
172
+ interactive=True,
173
+ elem_id="filter-columns-size",
174
+ )
175
+
176
+ leaderboard_table = gr.components.Dataframe(
177
+ value=leaderboard_df[
178
+ [c.name for c in utils.fields(utils.AutoEvalColumn) if c.never_hidden]
179
+ + shown_columns.value
180
+ + [utils.AutoEvalColumn.dummy.name]
181
+ ],
182
+ headers=[c.name for c in utils.fields(utils.AutoEvalColumn) if c.never_hidden] + shown_columns.value,
183
+ datatype=utils.TYPES,
184
+ elem_id="leaderboard-table",
185
+ interactive=False,
186
+ visible=True,
187
+ column_widths=["2%", "33%"]
188
+ )
189
+
190
+ # Dummy leaderboard for handling the case when the user uses backspace key
191
+ hidden_leaderboard_table_for_search = gr.components.Dataframe(
192
+ value=original_df[utils.COLS],
193
+ headers=utils.COLS,
194
+ datatype=utils.TYPES,
195
+ visible=False,
196
+ )
197
+ search_bar.submit(
198
+ update_table,
199
+ [
200
+ hidden_leaderboard_table_for_search,
201
+ shown_columns,
202
+ filter_columns_type,
203
+ filter_columns_precision,
204
+ filter_columns_size,
205
+ deleted_models_visibility,
206
+ search_bar,
207
+ ],
208
+ leaderboard_table,
209
+ )
210
+ for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, deleted_models_visibility]:
211
+ selector.change(
212
+ update_table,
213
+ [
214
+ hidden_leaderboard_table_for_search,
215
+ shown_columns,
216
+ filter_columns_type,
217
+ filter_columns_precision,
218
+ filter_columns_size,
219
+ deleted_models_visibility,
220
+ search_bar,
221
+ ],
222
+ leaderboard_table,
223
+ queue=True,
224
+ )
225
+
226
+ with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
227
+ gr.Markdown(about.LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
228
+
229
+ with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
230
+ with gr.Column():
231
+ with gr.Row():
232
+ gr.Markdown(about.EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
233
+
234
+ with gr.Column():
235
+ with gr.Accordion(
236
+ f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
237
+ open=False,
238
+ ):
239
+ with gr.Row():
240
+ finished_eval_table = gr.components.Dataframe(
241
+ value=finished_eval_queue_df,
242
+ headers=utils.EVAL_COLS,
243
+ datatype=utils.EVAL_TYPES,
244
+ row_count=5,
245
+ )
246
+ with gr.Accordion(
247
+ f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
248
+ open=False,
249
+ ):
250
+ with gr.Row():
251
+ running_eval_table = gr.components.Dataframe(
252
+ value=running_eval_queue_df,
253
+ headers=utils.EVAL_COLS,
254
+ datatype=utils.EVAL_TYPES,
255
+ row_count=5,
256
+ )
257
+
258
+ with gr.Accordion(
259
+ f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
260
+ open=False,
261
+ ):
262
+ with gr.Row():
263
+ pending_eval_table = gr.components.Dataframe(
264
+ value=pending_eval_queue_df,
265
+ headers=utils.EVAL_COLS,
266
+ datatype=utils.EVAL_TYPES,
267
+ row_count=5,
268
+ )
269
+ with gr.Row():
270
+ gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
271
+
272
+ with gr.Row():
273
+ with gr.Column():
274
+ model_name_textbox = gr.Textbox(label="Model name")
275
+ revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
276
+ model_type = gr.Dropdown(
277
+ choices=[t.to_str(" : ") for t in utils.ModelType if t != utils.ModelType.Unknown],
278
+ label="Model type",
279
+ multiselect=False,
280
+ value=None,
281
+ interactive=True,
282
+ )
283
+
284
+ with gr.Column():
285
+ precision = gr.Dropdown(
286
+ choices=[i.value.name for i in utils.Precision if i != utils.Precision.Unknown],
287
+ label="Precision",
288
+ multiselect=False,
289
+ value="float16",
290
+ interactive=True,
291
+ )
292
+ weight_type = gr.Dropdown(
293
+ choices=[i.value.name for i in utils.WeightType],
294
+ label="Weights type",
295
+ multiselect=False,
296
+ value="Original",
297
+ interactive=True,
298
+ )
299
+ base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
300
+
301
+ submit_button = gr.Button("Submit Eval")
302
+ submission_result = gr.Markdown()
303
+ submit_button.click(
304
+ submit.add_new_eval,
305
+ [
306
+ model_name_textbox,
307
+ base_model_name_textbox,
308
+ revision_name_textbox,
309
+ precision,
310
+ weight_type,
311
+ model_type,
312
+ ],
313
+ submission_result,
314
+ )
315
+
316
+ with gr.Row():
317
+ with gr.Accordion("📙 Citation", open=False):
318
+ citation_button = gr.Textbox(
319
+ value=about.CITATION_BUTTON_TEXT,
320
+ label=about.CITATION_BUTTON_LABEL,
321
+ lines=20,
322
+ elem_id="citation-button",
323
+ show_copy_button=True,
324
+ )
325
+
326
+ scheduler = BackgroundScheduler()
327
+ scheduler.add_job(restart_space, "interval", seconds=1800)
328
+ scheduler.start()
329
+ demo.queue(default_concurrency_limit=40).launch()
src/main_backend.py ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import logging
3
+ import pprint
4
+ import os
5
+
6
+ from huggingface_hub import snapshot_download
7
+
8
+ import src.backend.run_eval_suite as run_eval_suite
9
+ import src.backend.manage_requests as manage_requests
10
+ import src.backend.sort_queue as sort_queue
11
+ import src.envs as envs
12
+
13
+ os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'
14
+
15
+ logging.basicConfig(level=logging.ERROR)
16
+ pp = pprint.PrettyPrinter(width=80)
17
+
18
+ PENDING_STATUS = "PENDING"
19
+ RUNNING_STATUS = "RUNNING"
20
+ FINISHED_STATUS = "FINISHED"
21
+ FAILED_STATUS = "FAILED"
22
+ # import os
23
+ snapshot_download(repo_id=envs.RESULTS_REPO, revision="main",
24
+ local_dir=envs.EVAL_RESULTS_PATH_BACKEND, repo_type="dataset", max_workers=60)
25
+
26
+ snapshot_download(repo_id=envs.QUEUE_REPO, revision="main",
27
+ local_dir=envs.EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60)
28
+ # exit()
29
+
30
+ def run_auto_eval(args):
31
+ if not args.reproduce:
32
+ current_pending_status = [PENDING_STATUS]
33
+ print('_________________')
34
+ manage_requests.check_completed_evals(
35
+ api=envs.API,
36
+ checked_status=RUNNING_STATUS,
37
+ completed_status=FINISHED_STATUS,
38
+ failed_status=FAILED_STATUS,
39
+ hf_repo=envs.QUEUE_REPO,
40
+ local_dir=envs.EVAL_REQUESTS_PATH_BACKEND,
41
+ hf_repo_results=envs.RESULTS_REPO,
42
+ local_dir_results=envs.EVAL_RESULTS_PATH_BACKEND
43
+ )
44
+ logging.info("Checked completed evals")
45
+ eval_requests = manage_requests.get_eval_requests(job_status=current_pending_status,
46
+ hf_repo=envs.QUEUE_REPO,
47
+ local_dir=envs.EVAL_REQUESTS_PATH_BACKEND)
48
+ logging.info("Got eval requests")
49
+ eval_requests = sort_queue.sort_models_by_priority(api=envs.API, models=eval_requests)
50
+ logging.info("Sorted eval requests")
51
+
52
+ print(f"Found {len(eval_requests)} {','.join(current_pending_status)} eval requests")
53
+ print(eval_requests)
54
+ if len(eval_requests) == 0:
55
+ print("No eval requests found. Exiting.")
56
+ return
57
+
58
+ if args.model is not None:
59
+ eval_request = manage_requests.EvalRequest(
60
+ model=args.model,
61
+ status=PENDING_STATUS,
62
+ precision=args.precision
63
+ )
64
+ pp.pprint(eval_request)
65
+ else:
66
+ eval_request = eval_requests[0]
67
+ pp.pprint(eval_request)
68
+
69
+ # manage_requests.set_eval_request(
70
+ # api=envs.API,
71
+ # eval_request=eval_request,
72
+ # new_status=RUNNING_STATUS,
73
+ # hf_repo=envs.QUEUE_REPO,
74
+ # local_dir=envs.EVAL_REQUESTS_PATH_BACKEND
75
+ # )
76
+ # logging.info("Set eval request to running, now running eval")
77
+
78
+ run_eval_suite.run_evaluation(
79
+ eval_request=eval_request,
80
+ local_dir=envs.EVAL_RESULTS_PATH_BACKEND,
81
+ results_repo=envs.RESULTS_REPO,
82
+ batch_size=1,
83
+ device=envs.DEVICE,
84
+ no_cache=True,
85
+ need_check=not args.publish,
86
+ write_results=args.update
87
+ )
88
+ logging.info("Eval finished, now setting status to finished")
89
+ else:
90
+ eval_request = manage_requests.EvalRequest(
91
+ model=args.model,
92
+ status=PENDING_STATUS,
93
+ precision=args.precision
94
+ )
95
+ pp.pprint(eval_request)
96
+ logging.info("Running reproducibility eval")
97
+
98
+ run_eval_suite.run_evaluation(
99
+ eval_request=eval_request,
100
+ local_dir=envs.EVAL_RESULTS_PATH_BACKEND,
101
+ results_repo=envs.RESULTS_REPO,
102
+ batch_size=1,
103
+ device=envs.DEVICE,
104
+ need_check=not args.publish,
105
+ write_results=args.update
106
+ )
107
+ logging.info("Reproducibility eval finished")
108
+
109
+
110
+ def main():
111
+ parser = argparse.ArgumentParser(description="Run auto evaluation with optional reproducibility feature")
112
+
113
+ # Optional arguments
114
+ parser.add_argument("--reproduce", type=bool, default=False, help="Reproduce the evaluation results")
115
+ parser.add_argument("--model", type=str, default=None, help="Your Model ID")
116
+ parser.add_argument("--precision", type=str, default="float16", help="Precision of your model")
117
+ parser.add_argument("--publish", type=bool, default=False, help="whether directly publish the evaluation results on HF")
118
+ parser.add_argument("--update", type=bool, default=False, help="whether to update google drive files")
119
+
120
+ args = parser.parse_args()
121
+
122
+ run_auto_eval(args)
123
+
124
+
125
+ if __name__ == "__main__":
126
+ main()
src/pyproject.toml ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [tool.ruff]
2
+ # Enable pycodestyle (`E`) and Pyflakes (`F`) codes by default.
3
+ select = ["E", "F"]
4
+ ignore = ["E501"] # line too long (black is taking care of this)
5
+ line-length = 119
6
+ fixable = ["A", "B", "C", "D", "E", "F", "G", "I", "N", "Q", "S", "T", "W", "ANN", "ARG", "BLE", "COM", "DJ", "DTZ", "EM", "ERA", "EXE", "FBT", "ICN", "INP", "ISC", "NPY", "PD", "PGH", "PIE", "PL", "PT", "PTH", "PYI", "RET", "RSE", "RUF", "SIM", "SLF", "TCH", "TID", "TRY", "UP", "YTT"]
7
+
8
+ [tool.isort]
9
+ profile = "black"
10
+ line_length = 119
11
+
12
+ [tool.black]
13
+ line-length = 119
src/requirements.txt ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ APScheduler==3.10.1
2
+ black==23.11.0
3
+ click==8.1.3
4
+ datasets==2.14.5
5
+ gradio==4.4.0
6
+ gradio_client==0.7.0
7
+ huggingface-hub>=0.18.0
8
+ litellm==1.15.1
9
+ matplotlib==3.7.1
10
+ numpy==1.24.2
11
+ pandas==2.0.0
12
+ python-dateutil==2.8.2
13
+ requests==2.28.2
14
+ tqdm==4.65.0
15
+ transformers==4.35.2
16
+ tokenizers>=0.15.0
17
+ sentence-transformers==2.2.2