Spaces:
Running
Running
File size: 11,688 Bytes
1cf1e13 ae80214 1cf1e13 ae80214 1cf1e13 ae80214 1cf1e13 ae80214 1cf1e13 ae80214 1cf1e13 ae80214 1cf1e13 ae80214 1cf1e13 ae80214 1cf1e13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 |
import pickle
import os
import re
from g2p_en import G2p
from transformers import DebertaV2Tokenizer
from text import symbols
from text.symbols import punctuation
current_file_path = os.path.dirname(__file__)
CMU_DICT_PATH = os.path.join(current_file_path, "cmudict.rep")
CACHE_PATH = os.path.join(current_file_path, "cmudict_cache.pickle")
_g2p = G2p()
LOCAL_PATH = "./bert/deberta-v3-large"
tokenizer = DebertaV2Tokenizer.from_pretrained(LOCAL_PATH)
arpa = {
"AH0",
"S",
"AH1",
"EY2",
"AE2",
"EH0",
"OW2",
"UH0",
"NG",
"B",
"G",
"AY0",
"M",
"AA0",
"F",
"AO0",
"ER2",
"UH1",
"IY1",
"AH2",
"DH",
"IY0",
"EY1",
"IH0",
"K",
"N",
"W",
"IY2",
"T",
"AA1",
"ER1",
"EH2",
"OY0",
"UH2",
"UW1",
"Z",
"AW2",
"AW1",
"V",
"UW2",
"AA2",
"ER",
"AW0",
"UW0",
"R",
"OW1",
"EH1",
"ZH",
"AE0",
"IH2",
"IH",
"Y",
"JH",
"P",
"AY1",
"EY0",
"OY2",
"TH",
"HH",
"D",
"ER0",
"CH",
"AO1",
"AE1",
"AO2",
"OY1",
"AY2",
"IH1",
"OW0",
"L",
"SH",
}
def post_replace_ph(ph):
rep_map = {
":": ",",
";": ",",
",": ",",
"。": ".",
"!": "!",
"?": "?",
"\n": ".",
"·": ",",
"、": ",",
"…": "...",
"···": "...",
"・・・": "...",
"v": "V",
}
if ph in rep_map.keys():
ph = rep_map[ph]
if ph in symbols:
return ph
if ph not in symbols:
ph = "UNK"
return ph
rep_map = {
":": ",",
";": ",",
",": ",",
"。": ".",
"!": "!",
"?": "?",
"\n": ".",
".": ".",
"…": "...",
"···": "...",
"・・・": "...",
"·": ",",
"・": ",",
"、": ",",
"$": ".",
"“": "'",
"”": "'",
'"': "'",
"‘": "'",
"’": "'",
"(": "'",
")": "'",
"(": "'",
")": "'",
"《": "'",
"》": "'",
"【": "'",
"】": "'",
"[": "'",
"]": "'",
"—": "-",
"−": "-",
"~": "-",
"~": "-",
"「": "'",
"」": "'",
}
def replace_punctuation(text):
pattern = re.compile("|".join(re.escape(p) for p in rep_map.keys()))
replaced_text = pattern.sub(lambda x: rep_map[x.group()], text)
# replaced_text = re.sub(
# r"[^\u3040-\u309F\u30A0-\u30FF\u4E00-\u9FFF\u3400-\u4DBF\u3005"
# + "".join(punctuation)
# + r"]+",
# "",
# replaced_text,
# )
return replaced_text
def read_dict():
g2p_dict = {}
start_line = 49
with open(CMU_DICT_PATH) as f:
line = f.readline()
line_index = 1
while line:
if line_index >= start_line:
line = line.strip()
word_split = line.split(" ")
word = word_split[0]
syllable_split = word_split[1].split(" - ")
g2p_dict[word] = []
for syllable in syllable_split:
phone_split = syllable.split(" ")
g2p_dict[word].append(phone_split)
line_index = line_index + 1
line = f.readline()
return g2p_dict
def cache_dict(g2p_dict, file_path):
with open(file_path, "wb") as pickle_file:
pickle.dump(g2p_dict, pickle_file)
def get_dict():
if os.path.exists(CACHE_PATH):
with open(CACHE_PATH, "rb") as pickle_file:
g2p_dict = pickle.load(pickle_file)
else:
g2p_dict = read_dict()
cache_dict(g2p_dict, CACHE_PATH)
return g2p_dict
eng_dict = get_dict()
def refine_ph(phn):
tone = 0
if re.search(r"\d$", phn):
tone = int(phn[-1]) + 1
phn = phn[:-1]
else:
tone = 3
return phn.lower(), tone
def refine_syllables(syllables):
tones = []
phonemes = []
for phn_list in syllables:
for i in range(len(phn_list)):
phn = phn_list[i]
phn, tone = refine_ph(phn)
phonemes.append(phn)
tones.append(tone)
return phonemes, tones
import re
import inflect
_inflect = inflect.engine()
_comma_number_re = re.compile(r"([0-9][0-9\,]+[0-9])")
_decimal_number_re = re.compile(r"([0-9]+\.[0-9]+)")
_pounds_re = re.compile(r"£([0-9\,]*[0-9]+)")
_dollars_re = re.compile(r"\$([0-9\.\,]*[0-9]+)")
_ordinal_re = re.compile(r"[0-9]+(st|nd|rd|th)")
_number_re = re.compile(r"[0-9]+")
# List of (regular expression, replacement) pairs for abbreviations:
_abbreviations = [
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
for x in [
("mrs", "misess"),
("mr", "mister"),
("dr", "doctor"),
("st", "saint"),
("co", "company"),
("jr", "junior"),
("maj", "major"),
("gen", "general"),
("drs", "doctors"),
("rev", "reverend"),
("lt", "lieutenant"),
("hon", "honorable"),
("sgt", "sergeant"),
("capt", "captain"),
("esq", "esquire"),
("ltd", "limited"),
("col", "colonel"),
("ft", "fort"),
]
]
# List of (ipa, lazy ipa) pairs:
_lazy_ipa = [
(re.compile("%s" % x[0]), x[1])
for x in [
("r", "ɹ"),
("æ", "e"),
("ɑ", "a"),
("ɔ", "o"),
("ð", "z"),
("θ", "s"),
("ɛ", "e"),
("ɪ", "i"),
("ʊ", "u"),
("ʒ", "ʥ"),
("ʤ", "ʥ"),
("ˈ", "↓"),
]
]
# List of (ipa, lazy ipa2) pairs:
_lazy_ipa2 = [
(re.compile("%s" % x[0]), x[1])
for x in [
("r", "ɹ"),
("ð", "z"),
("θ", "s"),
("ʒ", "ʑ"),
("ʤ", "dʑ"),
("ˈ", "↓"),
]
]
# List of (ipa, ipa2) pairs
_ipa_to_ipa2 = [
(re.compile("%s" % x[0]), x[1]) for x in [("r", "ɹ"), ("ʤ", "dʒ"), ("ʧ", "tʃ")]
]
def _expand_dollars(m):
match = m.group(1)
parts = match.split(".")
if len(parts) > 2:
return match + " dollars" # Unexpected format
dollars = int(parts[0]) if parts[0] else 0
cents = int(parts[1]) if len(parts) > 1 and parts[1] else 0
if dollars and cents:
dollar_unit = "dollar" if dollars == 1 else "dollars"
cent_unit = "cent" if cents == 1 else "cents"
return "%s %s, %s %s" % (dollars, dollar_unit, cents, cent_unit)
elif dollars:
dollar_unit = "dollar" if dollars == 1 else "dollars"
return "%s %s" % (dollars, dollar_unit)
elif cents:
cent_unit = "cent" if cents == 1 else "cents"
return "%s %s" % (cents, cent_unit)
else:
return "zero dollars"
def _remove_commas(m):
return m.group(1).replace(",", "")
def _expand_ordinal(m):
return _inflect.number_to_words(m.group(0))
def _expand_number(m):
num = int(m.group(0))
if num > 1000 and num < 3000:
if num == 2000:
return "two thousand"
elif num > 2000 and num < 2010:
return "two thousand " + _inflect.number_to_words(num % 100)
elif num % 100 == 0:
return _inflect.number_to_words(num // 100) + " hundred"
else:
return _inflect.number_to_words(
num, andword="", zero="oh", group=2
).replace(", ", " ")
else:
return _inflect.number_to_words(num, andword="")
def _expand_decimal_point(m):
return m.group(1).replace(".", " point ")
def normalize_numbers(text):
text = re.sub(_comma_number_re, _remove_commas, text)
text = re.sub(_pounds_re, r"\1 pounds", text)
text = re.sub(_dollars_re, _expand_dollars, text)
text = re.sub(_decimal_number_re, _expand_decimal_point, text)
text = re.sub(_ordinal_re, _expand_ordinal, text)
text = re.sub(_number_re, _expand_number, text)
return text
def text_normalize(text):
text = normalize_numbers(text)
text = replace_punctuation(text)
text = re.sub(r"([,;.\?\!])([\w])", r"\1 \2", text)
return text
def distribute_phone(n_phone, n_word):
phones_per_word = [0] * n_word
for task in range(n_phone):
min_tasks = min(phones_per_word)
min_index = phones_per_word.index(min_tasks)
phones_per_word[min_index] += 1
return phones_per_word
def sep_text(text):
words = re.split(r"([,;.\?\!\s+])", text)
words = [word for word in words if word.strip() != ""]
return words
def text_to_words(text):
tokens = tokenizer.tokenize(text)
words = []
for idx, t in enumerate(tokens):
if t.startswith("▁"):
words.append([t[1:]])
else:
if t in punctuation:
if idx == len(tokens) - 1:
words.append([f"{t}"])
else:
if (
not tokens[idx + 1].startswith("▁")
and tokens[idx + 1] not in punctuation
):
if idx == 0:
words.append([])
words[-1].append(f"{t}")
else:
words.append([f"{t}"])
else:
if idx == 0:
words.append([])
words[-1].append(f"{t}")
return words
def g2p(text):
phones = []
tones = []
phone_len = []
# words = sep_text(text)
# tokens = [tokenizer.tokenize(i) for i in words]
words = text_to_words(text)
for word in words:
temp_phones, temp_tones = [], []
if len(word) > 1:
if "'" in word:
word = ["".join(word)]
for w in word:
if w in punctuation:
temp_phones.append(w)
temp_tones.append(0)
continue
if w.upper() in eng_dict:
phns, tns = refine_syllables(eng_dict[w.upper()])
temp_phones += [post_replace_ph(i) for i in phns]
temp_tones += tns
# w2ph.append(len(phns))
else:
phone_list = list(filter(lambda p: p != " ", _g2p(w)))
phns = []
tns = []
for ph in phone_list:
if ph in arpa:
ph, tn = refine_ph(ph)
phns.append(ph)
tns.append(tn)
else:
phns.append(ph)
tns.append(0)
temp_phones += [post_replace_ph(i) for i in phns]
temp_tones += tns
phones += temp_phones
tones += temp_tones
phone_len.append(len(temp_phones))
# phones = [post_replace_ph(i) for i in phones]
word2ph = []
for token, pl in zip(words, phone_len):
word_len = len(token)
aaa = distribute_phone(pl, word_len)
word2ph += aaa
phones = ["_"] + phones + ["_"]
tones = [0] + tones + [0]
word2ph = [1] + word2ph + [1]
assert len(phones) == len(tones), text
assert len(phones) == sum(word2ph), text
return phones, tones, word2ph
def get_bert_feature(text, word2ph):
from text import english_bert_mock
return english_bert_mock.get_bert_feature(text, word2ph)
if __name__ == "__main__":
# print(get_dict())
# print(eng_word_to_phoneme("hello"))
print(g2p("In this paper, we propose 1 DSPGAN, a GAN-based universal vocoder."))
# all_phones = set()
# for k, syllables in eng_dict.items():
# for group in syllables:
# for ph in group:
# all_phones.add(ph)
# print(all_phones)
|