Spaces:
Sleeping
Sleeping
File size: 29,807 Bytes
123489f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 |
import os
import time
import requests
import sys
import json
import gradio as gr
import numpy as np
import torch
import torchvision
import pims
from export_onnx_model import run_export
from onnxruntime.quantization import QuantType
from onnxruntime.quantization.quantize import quantize_dynamic
sys.path.append(sys.path[0] + "/tracker")
sys.path.append(sys.path[0] + "/tracker/model")
from track_anything import TrackingAnything
from track_anything import parse_augment
from utils.painter import mask_painter
from utils.blur import blur_frames_and_write
# download checkpoints
def download_checkpoint(url, folder, filename):
os.makedirs(folder, exist_ok=True)
filepath = os.path.join(folder, filename)
if not os.path.exists(filepath):
print("Downloading checkpoints...")
response = requests.get(url, stream=True)
with open(filepath, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
if chunk:
f.write(chunk)
print("Download successful.")
return filepath
# convert points input to prompt state
def get_prompt(click_state, click_input):
inputs = json.loads(click_input)
points = click_state[0]
labels = click_state[1]
for input in inputs:
points.append(input[:2])
labels.append(input[2])
click_state[0] = points
click_state[1] = labels
prompt = {
"prompt_type": ["click"],
"input_point": click_state[0],
"input_label": click_state[1],
"multimask_output": "False",
}
return prompt
# extract frames from upload video
def get_frames_from_video(video_input, video_state):
"""
Args:
video_path:str
timestamp:float64
Return
[[0:nearest_frame], [nearest_frame:], nearest_frame]
"""
video_path = video_input
frames = []
user_name = time.time()
operation_log = [
("", ""),
(
"Video uploaded. Click the image for adding targets to track and blur.",
"Normal",
),
]
try:
frames = pims.Video(video_path)
fps = frames.frame_rate
image_size = (frames.shape[1], frames.shape[2])
except (OSError, TypeError, ValueError, KeyError, SyntaxError) as e:
print("read_frame_source:{} error. {}\n".format(video_path, str(e)))
# initialize video_state
video_state = {
"user_name": user_name,
"video_name": os.path.split(video_path)[-1],
"origin_images": frames,
"painted_images": [0] * len(frames),
"masks": [0] * len(frames),
"logits": [None] * len(frames),
"select_frame_number": 0,
"fps": fps,
}
video_info = "Video Name: {}, FPS: {}, Total Frames: {}, Image Size:{}".format(
video_state["video_name"], video_state["fps"], len(frames), image_size
)
model.samcontroler.sam_controler.reset_image()
model.samcontroler.sam_controler.set_image(video_state["origin_images"][0])
return (
video_state,
video_info,
video_state["origin_images"][0],
gr.update(visible=True, maximum=len(frames), value=1),
gr.update(visible=True, maximum=len(frames), value=len(frames)),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True, value=operation_log),
)
def run_example(example):
return video_input
# get the select frame from gradio slider
def select_template(image_selection_slider, video_state, interactive_state):
# images = video_state[1]
image_selection_slider -= 1
video_state["select_frame_number"] = image_selection_slider
# once select a new template frame, set the image in sam
model.samcontroler.sam_controler.reset_image()
model.samcontroler.sam_controler.set_image(
video_state["origin_images"][image_selection_slider]
)
# update the masks when select a new template frame
operation_log = [
("", ""),
(
"Select frame {}. Try click image and add mask for tracking.".format(
image_selection_slider
),
"Normal",
),
]
return (
video_state["painted_images"][image_selection_slider],
video_state,
interactive_state,
operation_log,
)
# set the tracking end frame
def set_end_number(track_pause_number_slider, video_state, interactive_state):
interactive_state["track_end_number"] = track_pause_number_slider
operation_log = [
("", ""),
(
"Set the tracking finish at frame {}".format(track_pause_number_slider),
"Normal",
),
]
return (
interactive_state,
operation_log,
)
def get_resize_ratio(resize_ratio_slider, interactive_state):
interactive_state["resize_ratio"] = resize_ratio_slider
return interactive_state
def get_blur_strength(blur_strength_slider, interactive_state):
interactive_state["blur_strength"] = blur_strength_slider
return interactive_state
# use sam to get the mask
def sam_refine(
video_state, point_prompt, click_state, interactive_state, evt: gr.SelectData
):
"""
Args:
template_frame: PIL.Image
point_prompt: flag for positive or negative button click
click_state: [[points], [labels]]
"""
if point_prompt == "Positive":
coordinate = "[[{},{},1]]".format(evt.index[0], evt.index[1])
interactive_state["positive_click_times"] += 1
else:
coordinate = "[[{},{},0]]".format(evt.index[0], evt.index[1])
interactive_state["negative_click_times"] += 1
# prompt for sam model
model.samcontroler.sam_controler.reset_image()
model.samcontroler.sam_controler.set_image(
video_state["origin_images"][video_state["select_frame_number"]]
)
prompt = get_prompt(click_state=click_state, click_input=coordinate)
mask, logit, painted_image = model.first_frame_click(
image=video_state["origin_images"][video_state["select_frame_number"]],
points=np.array(prompt["input_point"]),
labels=np.array(prompt["input_label"]),
multimask=prompt["multimask_output"],
)
video_state["masks"][video_state["select_frame_number"]] = mask
video_state["logits"][video_state["select_frame_number"]] = logit
video_state["painted_images"][video_state["select_frame_number"]] = painted_image
operation_log = [
("", ""),
(
"Use SAM for segment. You can try add positive and negative points by clicking. Or press Clear clicks button to refresh the image. Press Add mask button when you are satisfied with the segment",
"Normal",
),
]
return painted_image, video_state, interactive_state, operation_log
def add_multi_mask(video_state, interactive_state, mask_dropdown):
try:
mask = video_state["masks"][video_state["select_frame_number"]]
interactive_state["multi_mask"]["masks"].append(mask)
interactive_state["multi_mask"]["mask_names"].append(
"mask_{:03d}".format(len(interactive_state["multi_mask"]["masks"]))
)
mask_dropdown.append(
"mask_{:03d}".format(len(interactive_state["multi_mask"]["masks"]))
)
select_frame, run_status = show_mask(
video_state, interactive_state, mask_dropdown
)
operation_log = [
("", ""),
(
"Added a mask, use the mask select for target tracking or blurring.",
"Normal",
),
]
except Exception:
operation_log = [
("Please click the left image to generate mask.", "Error"),
("", ""),
]
return (
interactive_state,
gr.update(
choices=interactive_state["multi_mask"]["mask_names"], value=mask_dropdown
),
select_frame,
[[], []],
operation_log,
)
def clear_click(video_state, click_state):
click_state = [[], []]
template_frame = video_state["origin_images"][video_state["select_frame_number"]]
operation_log = [
("", ""),
("Clear points history and refresh the image.", "Normal"),
]
return template_frame, click_state, operation_log
def remove_multi_mask(interactive_state, mask_dropdown):
interactive_state["multi_mask"]["mask_names"] = []
interactive_state["multi_mask"]["masks"] = []
operation_log = [("", ""), ("Remove all mask, please add new masks", "Normal")]
return interactive_state, gr.update(choices=[], value=[]), operation_log
def show_mask(video_state, interactive_state, mask_dropdown):
mask_dropdown.sort()
select_frame = video_state["origin_images"][video_state["select_frame_number"]]
for i in range(len(mask_dropdown)):
mask_number = int(mask_dropdown[i].split("_")[1]) - 1
mask = interactive_state["multi_mask"]["masks"][mask_number]
select_frame = mask_painter(
select_frame, mask.astype("uint8"), mask_color=mask_number + 2
)
operation_log = [
("", ""),
("Select {} for tracking or blurring".format(mask_dropdown), "Normal"),
]
return select_frame, operation_log
# tracking vos
def vos_tracking_video(video_state, interactive_state, mask_dropdown):
operation_log = [
("", ""),
(
"Track the selected masks, and then you can select the masks for blurring.",
"Normal",
),
]
model.xmem.clear_memory()
if interactive_state["track_end_number"]:
following_frames = video_state["origin_images"][
video_state["select_frame_number"]: interactive_state["track_end_number"]
]
else:
following_frames = video_state["origin_images"][
video_state["select_frame_number"]:
]
if interactive_state["multi_mask"]["masks"]:
if len(mask_dropdown) == 0:
mask_dropdown = ["mask_001"]
mask_dropdown.sort()
template_mask = interactive_state["multi_mask"]["masks"][
int(mask_dropdown[0].split("_")[1]) - 1
] * (int(mask_dropdown[0].split("_")[1]))
for i in range(1, len(mask_dropdown)):
mask_number = int(mask_dropdown[i].split("_")[1]) - 1
template_mask = np.clip(
template_mask
+ interactive_state["multi_mask"]["masks"][mask_number]
* (mask_number + 1),
0,
mask_number + 1,
)
video_state["masks"][video_state["select_frame_number"]] = template_mask
else:
template_mask = video_state["masks"][video_state["select_frame_number"]]
# operation error
if len(np.unique(template_mask)) == 1:
template_mask[0][0] = 1
operation_log = [
(
"Error! Please add at least one mask to track by clicking the left image.",
"Error",
),
("", ""),
]
# return video_output, video_state, interactive_state, operation_error
output_path = "./output/track/{}".format(video_state["video_name"])
fps = video_state["fps"]
masks, logits, painted_images = model.generator(
images=following_frames, template_mask=template_mask, write=True, fps=fps, output_path=output_path
)
# clear GPU memory
model.xmem.clear_memory()
if interactive_state["track_end_number"]:
video_state["masks"][
video_state["select_frame_number"]: interactive_state["track_end_number"]
] = masks
video_state["logits"][
video_state["select_frame_number"]: interactive_state["track_end_number"]
] = logits
video_state["painted_images"][
video_state["select_frame_number"]: interactive_state["track_end_number"]
] = painted_images
else:
video_state["masks"][video_state["select_frame_number"]:] = masks
video_state["logits"][video_state["select_frame_number"]:] = logits
video_state["painted_images"][
video_state["select_frame_number"]:
] = painted_images
interactive_state["inference_times"] += 1
print(
"For generating this tracking result, inference times: {}, click times: {}, positive: {}, negative: {}".format(
interactive_state["inference_times"],
interactive_state["positive_click_times"]
+ interactive_state["negative_click_times"],
interactive_state["positive_click_times"],
interactive_state["negative_click_times"],
)
)
return output_path, video_state, interactive_state, operation_log
def blur_video(video_state, interactive_state, mask_dropdown):
operation_log = [("", ""), ("Removed the selected masks.", "Normal")]
frames = np.asarray(video_state["origin_images"])[
video_state["select_frame_number"]:interactive_state["track_end_number"]
]
fps = video_state["fps"]
output_path = "./output/blur/{}".format(video_state["video_name"])
blur_masks = np.asarray(video_state["masks"][video_state["select_frame_number"]:interactive_state["track_end_number"]])
if len(mask_dropdown) == 0:
mask_dropdown = ["mask_001"]
mask_dropdown.sort()
# convert mask_dropdown to mask numbers
blur_mask_numbers = [
int(mask_dropdown[i].split("_")[1]) for i in range(len(mask_dropdown))
]
# interate through all masks and remove the masks that are not in mask_dropdown
unique_masks = np.unique(blur_masks)
num_masks = len(unique_masks) - 1
for i in range(1, num_masks + 1):
if i in blur_mask_numbers:
continue
blur_masks[blur_masks == i] = 0
# blur video
try:
blur_frames_and_write(
frames,
blur_masks,
ratio=interactive_state["resize_ratio"],
strength=interactive_state["blur_strength"],
fps=fps,
output_path=output_path
)
except Exception as e:
print("Exception ", e)
operation_log = [
(
"Error! You are trying to blur without masks input. Please track the selected mask first, and then press blur. To speed up, please use the resize ratio to scale down the image size.",
"Error",
),
("", ""),
]
return output_path, video_state, interactive_state, operation_log
# generate video after vos inference
def generate_video_from_frames(frames, output_path, fps=30):
"""
Generates a video from a list of frames.
Args:
frames (list of numpy arrays): The frames to include in the video.
output_path (str): The path to save the generated video.
fps (int, optional): The frame rate of the output video. Defaults to 30.
"""
frames = torch.from_numpy(np.asarray(frames))
if not os.path.exists(os.path.dirname(output_path)):
os.makedirs(os.path.dirname(output_path))
torchvision.io.write_video(output_path, frames, fps=fps, video_codec="libx264")
return output_path
# convert to onnx quantized model
def convert_to_onnx(args, checkpoint, quantized=True):
"""
Convert the model to onnx format.
Args:
model (nn.Module): The model to convert.
output_path (str): The path to save the onnx model.
input_shape (tuple): The input shape of the model.
quantized (bool, optional): Whether to quantize the model. Defaults to True.
"""
onnx_output_path = f"{checkpoint.split('.')[-2]}.onnx"
quant_output_path = f"{checkpoint.split('.')[-2]}_quant.onnx"
print("Converting to ONNX quantized model...")
if not (os.path.exists(onnx_output_path)):
run_export(
model_type=args.sam_model_type,
checkpoint=checkpoint,
opset=16,
output=onnx_output_path,
return_single_mask=True
)
if quantized and not (os.path.exists(quant_output_path)):
quantize_dynamic(
model_input=onnx_output_path,
model_output=quant_output_path,
optimize_model=True,
per_channel=False,
reduce_range=False,
weight_type=QuantType.QUInt8,
)
return quant_output_path if quantized else onnx_output_path
# args, defined in track_anything.py
args = parse_augment()
# check and download checkpoints if needed
SAM_checkpoint_dict = {
"vit_h": "sam_vit_h_4b8939.pth",
"vit_l": "sam_vit_l_0b3195.pth",
"vit_b": "sam_vit_b_01ec64.pth",
"vit_t": "mobile_sam.pt",
}
SAM_checkpoint_url_dict = {
"vit_h": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth",
"vit_l": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth",
"vit_b": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth",
"vit_t": "https://github.com/ChaoningZhang/MobileSAM/raw/master/weights/mobile_sam.pt",
}
sam_checkpoint = SAM_checkpoint_dict[args.sam_model_type]
sam_checkpoint_url = SAM_checkpoint_url_dict[args.sam_model_type]
xmem_checkpoint = "XMem-s012.pth"
xmem_checkpoint_url = (
"https://github.com/hkchengrex/XMem/releases/download/v1.0/XMem-s012.pth"
)
# initialize SAM, XMem
folder = "checkpoints"
sam_pt_checkpoint = download_checkpoint(sam_checkpoint_url, folder, sam_checkpoint)
xmem_checkpoint = download_checkpoint(xmem_checkpoint_url, folder, xmem_checkpoint)
if args.sam_model_type == "vit_t":
sam_onnx_checkpoint = convert_to_onnx(args, sam_pt_checkpoint, quantized=True)
else:
sam_onnx_checkpoint = ""
model = TrackingAnything(sam_pt_checkpoint, sam_onnx_checkpoint, xmem_checkpoint, args)
title = """<p><h1 align="center">Blur-Anything</h1></p>
"""
description = """<p>Gradio demo for Blur Anything, a flexible and interactive
tool for video object tracking, segmentation, and blurring. To
use it, simply upload your video, or click one of the examples to
load them. Code: <a
href="https://github.com/Y-T-G/Blur-Anything">https://github.com/Y-T-G/Blur-Anything</a>
<a
href="https://huggingface.co/spaces/Y-T-G/Blur-Anything?duplicate=true"><img
style="display: inline; margin-top: 0em; margin-bottom: 0em"
src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>"""
with gr.Blocks() as iface:
"""
state for
"""
click_state = gr.State([[], []])
interactive_state = gr.State(
{
"inference_times": 0,
"negative_click_times": 0,
"positive_click_times": 0,
"mask_save": args.mask_save,
"multi_mask": {"mask_names": [], "masks": []},
"track_end_number": None,
"resize_ratio": 1,
"blur_strength": 3,
}
)
video_state = gr.State(
{
"user_name": "",
"video_name": "",
"origin_images": None,
"painted_images": None,
"masks": None,
"blur_masks": None,
"logits": None,
"select_frame_number": 0,
"fps": 30,
}
)
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
# for user video input
with gr.Column():
with gr.Row():
video_input = gr.Video()
with gr.Column():
video_info = gr.Textbox(label="Video Info")
resize_info = gr.Textbox(
value="You can use the resize ratio slider to scale down the original image to around 360P resolution for faster processing.",
label="Tips for running this demo.",
)
resize_ratio_slider = gr.Slider(
minimum=0.02,
maximum=1,
step=0.02,
value=1,
label="Resize ratio",
visible=True,
)
with gr.Row():
# put the template frame under the radio button
with gr.Column():
# extract frames
with gr.Column():
extract_frames_button = gr.Button(
value="Get video info", interactive=True, variant="primary"
)
# click points settins, negative or positive, mode continuous or single
with gr.Row():
with gr.Row():
point_prompt = gr.Radio(
choices=["Positive", "Negative"],
value="Positive",
label="Point Prompt",
interactive=True,
visible=False,
)
remove_mask_button = gr.Button(
value="Remove mask", interactive=True, visible=False
)
clear_button_click = gr.Button(
value="Clear Clicks", interactive=True, visible=False
)
Add_mask_button = gr.Button(
value="Add mask", interactive=True, visible=False
)
template_frame = gr.Image(
type="pil",
interactive=True,
elem_id="template_frame",
visible=False,
)
image_selection_slider = gr.Slider(
minimum=1,
maximum=100,
step=1,
value=1,
label="Image Selection",
visible=False,
)
track_pause_number_slider = gr.Slider(
minimum=1,
maximum=100,
step=1,
value=1,
label="Track end frames",
visible=False,
)
with gr.Column():
run_status = gr.HighlightedText(
value=[
("Text", "Error"),
("to be", "Label 2"),
("highlighted", "Label 3"),
],
visible=False,
)
mask_dropdown = gr.Dropdown(
multiselect=True,
value=[],
label="Mask selection",
info=".",
visible=False,
)
video_output = gr.Video(visible=False)
with gr.Row():
tracking_video_predict_button = gr.Button(
value="Tracking", visible=False
)
blur_video_predict_button = gr.Button(
value="Blur", visible=False
)
with gr.Row():
blur_strength_slider = gr.Slider(
minimum=3,
maximum=15,
step=2,
value=3,
label="Blur Strength",
visible=False,
)
# first step: get the video information
extract_frames_button.click(
fn=get_frames_from_video,
inputs=[video_input, video_state],
outputs=[
video_state,
video_info,
template_frame,
image_selection_slider,
track_pause_number_slider,
point_prompt,
clear_button_click,
Add_mask_button,
template_frame,
tracking_video_predict_button,
video_output,
mask_dropdown,
remove_mask_button,
blur_video_predict_button,
blur_strength_slider,
run_status,
],
)
# second step: select images from slider
image_selection_slider.release(
fn=select_template,
inputs=[image_selection_slider, video_state, interactive_state],
outputs=[template_frame, video_state, interactive_state, run_status],
api_name="select_image",
)
track_pause_number_slider.release(
fn=set_end_number,
inputs=[track_pause_number_slider, video_state, interactive_state],
outputs=[interactive_state, run_status],
api_name="end_image",
)
resize_ratio_slider.release(
fn=get_resize_ratio,
inputs=[resize_ratio_slider, interactive_state],
outputs=[interactive_state],
api_name="resize_ratio",
)
blur_strength_slider.release(
fn=get_blur_strength,
inputs=[blur_strength_slider, interactive_state],
outputs=[interactive_state],
api_name="blur_strength",
)
# click select image to get mask using sam
template_frame.select(
fn=sam_refine,
inputs=[video_state, point_prompt, click_state, interactive_state],
outputs=[template_frame, video_state, interactive_state, run_status],
)
# add different mask
Add_mask_button.click(
fn=add_multi_mask,
inputs=[video_state, interactive_state, mask_dropdown],
outputs=[
interactive_state,
mask_dropdown,
template_frame,
click_state,
run_status,
],
)
remove_mask_button.click(
fn=remove_multi_mask,
inputs=[interactive_state, mask_dropdown],
outputs=[interactive_state, mask_dropdown, run_status],
)
# tracking video from select image and mask
tracking_video_predict_button.click(
fn=vos_tracking_video,
inputs=[video_state, interactive_state, mask_dropdown],
outputs=[video_output, video_state, interactive_state, run_status],
)
# tracking video from select image and mask
blur_video_predict_button.click(
fn=blur_video,
inputs=[video_state, interactive_state, mask_dropdown],
outputs=[video_output, video_state, interactive_state, run_status],
)
# click to get mask
mask_dropdown.change(
fn=show_mask,
inputs=[video_state, interactive_state, mask_dropdown],
outputs=[template_frame, run_status],
)
# clear input
video_input.clear(
lambda: (
{
"user_name": "",
"video_name": "",
"origin_images": None,
"painted_images": None,
"masks": None,
"blur_masks": None,
"logits": None,
"select_frame_number": 0,
"fps": 30,
},
{
"inference_times": 0,
"negative_click_times": 0,
"positive_click_times": 0,
"mask_save": args.mask_save,
"multi_mask": {"mask_names": [], "masks": []},
"track_end_number": 0,
"resize_ratio": 1,
"blur_strength": 3,
},
[[], []],
None,
None,
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False, value=[]),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
),
[],
[
video_state,
interactive_state,
click_state,
video_output,
template_frame,
tracking_video_predict_button,
image_selection_slider,
track_pause_number_slider,
point_prompt,
clear_button_click,
Add_mask_button,
template_frame,
tracking_video_predict_button,
video_output,
mask_dropdown,
remove_mask_button,
blur_video_predict_button,
blur_strength_slider,
run_status,
],
queue=False,
show_progress=False,
)
# points clear
clear_button_click.click(
fn=clear_click,
inputs=[
video_state,
click_state,
],
outputs=[template_frame, click_state, run_status],
)
# set example
gr.Markdown("## Examples")
gr.Examples(
examples=[
os.path.join(os.path.dirname(__file__), "./data/", test_sample)
for test_sample in [
"sample-1.mp4",
"sample-2.mp4",
]
],
fn=run_example,
inputs=[video_input],
outputs=[video_input],
)
iface.queue(concurrency_count=1)
iface.launch(
debug=True, enable_queue=True
)
|