Spaces:
Running
Running
import torch | |
import numpy as np | |
class BaseSegmenter: | |
def __init__(self, sam_pt_checkpoint, sam_onnx_checkpoint, model_type, device="cuda:0"): | |
""" | |
device: model device | |
SAM_checkpoint: path of SAM checkpoint | |
model_type: vit_b, vit_l, vit_h, vit_t | |
""" | |
print(f"Initializing BaseSegmenter to {device}") | |
assert model_type in [ | |
"vit_b", | |
"vit_l", | |
"vit_h", | |
"vit_t", | |
], "model_type must be vit_b, vit_l, vit_h or vit_t" | |
self.device = device | |
self.torch_dtype = torch.float16 if "cuda" in device else torch.float32 | |
if (model_type == "vit_t"): | |
from mobile_sam import sam_model_registry, SamPredictor | |
from onnxruntime import InferenceSession | |
self.ort_session = InferenceSession(sam_onnx_checkpoint) | |
self.predict = self.predict_onnx | |
else: | |
from segment_anything import sam_model_registry, SamPredictor | |
self.predict = self.predict_pt | |
self.model = sam_model_registry[model_type](checkpoint=sam_pt_checkpoint) | |
self.model.to(device=self.device) | |
self.predictor = SamPredictor(self.model) | |
self.embedded = False | |
def set_image(self, image: np.ndarray): | |
# PIL.open(image_path) 3channel: RGB | |
# image embedding: avoid encode the same image multiple times | |
self.orignal_image = image | |
if self.embedded: | |
print("repeat embedding, please reset_image.") | |
return | |
self.predictor.set_image(image) | |
self.image_embedding = self.predictor.get_image_embedding().cpu().numpy() | |
self.embedded = True | |
return | |
def reset_image(self): | |
# reset image embeding | |
self.predictor.reset_image() | |
self.embedded = False | |
def predict_pt(self, prompts, mode, multimask=True): | |
""" | |
image: numpy array, h, w, 3 | |
prompts: dictionary, 3 keys: 'point_coords', 'point_labels', 'mask_input' | |
prompts['point_coords']: numpy array [N,2] | |
prompts['point_labels']: numpy array [1,N] | |
prompts['mask_input']: numpy array [1,256,256] | |
mode: 'point' (points only), 'mask' (mask only), 'both' (consider both) | |
mask_outputs: True (return 3 masks), False (return 1 mask only) | |
whem mask_outputs=True, mask_input=logits[np.argmax(scores), :, :][None, :, :] | |
""" | |
assert ( | |
self.embedded | |
), "prediction is called before set_image (feature embedding)." | |
assert mode in ["point", "mask", "both"], "mode must be point, mask, or both" | |
if mode == "point": | |
masks, scores, logits = self.predictor.predict( | |
point_coords=prompts["point_coords"], | |
point_labels=prompts["point_labels"], | |
multimask_output=multimask, | |
) | |
elif mode == "mask": | |
masks, scores, logits = self.predictor.predict( | |
mask_input=prompts["mask_input"], multimask_output=multimask | |
) | |
elif mode == "both": # both | |
masks, scores, logits = self.predictor.predict( | |
point_coords=prompts["point_coords"], | |
point_labels=prompts["point_labels"], | |
mask_input=prompts["mask_input"], | |
multimask_output=multimask, | |
) | |
else: | |
raise ("Not implement now!") | |
# masks (n, h, w), scores (n,), logits (n, 256, 256) | |
return masks, scores, logits | |
def predict_onnx(self, prompts, mode, multimask=True): | |
""" | |
image: numpy array, h, w, 3 | |
prompts: dictionary, 3 keys: 'point_coords', 'point_labels', 'mask_input' | |
prompts['point_coords']: numpy array [N,2] | |
prompts['point_labels']: numpy array [1,N] | |
prompts['mask_input']: numpy array [1,256,256] | |
mode: 'point' (points only), 'mask' (mask only), 'both' (consider both) | |
mask_outputs: True (return 3 masks), False (return 1 mask only) | |
whem mask_outputs=True, mask_input=logits[np.argmax(scores), :, :][None, :, :] | |
""" | |
assert ( | |
self.embedded | |
), "prediction is called before set_image (feature embedding)." | |
assert mode in ["point", "mask", "both"], "mode must be point, mask, or both" | |
if mode == "point": | |
ort_inputs = { | |
"image_embeddings": self.image_embedding, | |
"point_coords": prompts["point_coords"], | |
"point_labels": prompts["point_labels"], | |
"mask_input": np.zeros((1, 1, 256, 256), dtype=np.float32), | |
"has_mask_input": np.zeros(1, dtype=np.float32), | |
"orig_im_size": prompts["orig_im_size"], | |
} | |
masks, scores, logits = self.ort_session.run(None, ort_inputs) | |
masks = masks > self.predictor.model.mask_threshold | |
elif mode == "mask": | |
ort_inputs = { | |
"image_embeddings": self.image_embedding, | |
"point_coords": np.zeros((len(prompts["point_labels"]), 2), dtype=np.float32), | |
"point_labels": prompts["point_labels"], | |
"mask_input": prompts["mask_input"], | |
"has_mask_input": np.ones(1, dtype=np.float32), | |
"orig_im_size": prompts["orig_im_size"], | |
} | |
masks, scores, logits = self.ort_session.run(None, ort_inputs) | |
masks = masks > self.predictor.model.mask_threshold | |
elif mode == "both": # both | |
ort_inputs = { | |
"image_embeddings": self.image_embedding, | |
"point_coords": prompts["point_coords"], | |
"point_labels": prompts["point_labels"], | |
"mask_input": prompts["mask_input"], | |
"has_mask_input": np.ones(1, dtype=np.float32), | |
"orig_im_size": prompts["orig_im_size"], | |
} | |
masks, scores, logits = self.ort_session.run(None, ort_inputs) | |
masks = masks > self.predictor.model.mask_threshold | |
else: | |
raise ("Not implement now!") | |
# masks (n, h, w), scores (n,), logits (n, 256, 256) | |
return masks[0], scores[0], logits[0] | |