import os import gradio as gr import torch from transformers import AutoModel, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer from threading import Thread MODEL_PATH = os.environ.get('MODEL_PATH', "ClueAI/ChatYuan-large-v2") TOKENIZER_PATH = os.environ.get("TOKENIZER_PATH", MODEL_PATH) tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_PATH, trust_remote_code=True) # model = AutoModel.from_pretrained(MODEL_PATH, trust_remote_code=True).float() model = AutoModel.from_pretrained(MODEL_PATH, trust_remote_code=True, device_map="auto").eval() class StopOnTokens(StoppingCriteria): def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: stop_ids = [0, 2] for stop_id in stop_ids: if input_ids[0][-1] == stop_id: return True return False def parse_text(text): lines = text.split("\n") lines = [line for line in lines if line != ""] count = 0 for i, line in enumerate(lines): if "```" in line: count += 1 items = line.split('`') if count % 2 == 1: lines[i] = f'
'
else:
lines[i] = f'
'
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", "\`")
line = line.replace("<", "<")
line = line.replace(">", ">")
line = line.replace(" ", " ")
line = line.replace("*", "*")
line = line.replace("_", "_")
line = line.replace("-", "-")
line = line.replace(".", ".")
line = line.replace("!", "!")
line = line.replace("(", "(")
line = line.replace(")", ")")
line = line.replace("$", "$")
lines[i] = "