File size: 5,376 Bytes
59cb268
 
 
 
09027c4
59cb268
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9dd953
 
 
 
 
 
59cb268
 
 
 
 
0cbf01b
fbb0e76
59cb268
fbb0e76
0cbf01b
59cb268
 
09027c4
 
0cbf01b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import requests
from bs4 import BeautifulSoup
import pandas as pd
import streamlit as st
import plotly.express as px

# 定義函數來獲取並處理台南市立醫院的數據
def get_tmh_data():
    url_tmh = "https://www.tmh.org.tw/tmh2016/ImpBD.aspx?Kind=2"
    response_tmh = requests.get(url_tmh)
    response_tmh.encoding = 'utf-8'

    soup_tmh = BeautifulSoup(response_tmh.text, 'html.parser')
    table_tmh = soup_tmh.find('table', {'class': 'RegTable'})

    data_tmh = []
    rows_tmh = table_tmh.find_all('tr')

    headers_tmh = [th.text.strip() for th in rows_tmh[0].find_all('th')]

    for row in rows_tmh[1:]:
        cols = row.find_all('td')
        cols = [col.text.strip() for col in cols]
        data_tmh.append(cols)

    df_tmh = pd.DataFrame(data_tmh, columns=headers_tmh)

    # 更改台南市立醫院的列名
    df_tmh = df_tmh.rename(columns={
        '病床種類': '病床類別',
        '床位別數': '病床數',
        '住院人數': '佔床數'
    })

    df_tmh['醫院'] = '台南市立醫院'
    return df_tmh

# 定義函數來獲取並處理奇美醫院的數據
def get_chimei_data():
    url_chimei = "https://www.chimei.org.tw/%E4%BD%94%E5%BA%8A%E7%8E%87%E6%9F%A5%E8%A9%A2/%E4%BD%94%E5%BA%8A%E7%8E%87%E6%9F%A5%E8%A9%A2.aspx?ihospital=10&ffloor="
    response_chimei = requests.get(url_chimei)
    response_chimei.encoding = 'utf-8'

    soup_chimei = BeautifulSoup(response_chimei.text, 'html.parser')
    table_chimei = soup_chimei.find('table', {'id': 'DG1'})

    data_chimei = []
    rows_chimei = table_chimei.find_all('tr')

    headers_chimei = [th.text.strip() for th in rows_chimei[0].find_all('td')]

    for row in rows_chimei[1:]:
        cols = row.find_all('td')
        cols = [col.text.strip() for col in cols]
        data_chimei.append(cols)

    df_chimei = pd.DataFrame(data_chimei, columns=headers_chimei)

    # 更改奇美醫院的列名
    df_chimei = df_chimei.rename(columns={
        '總床數': '病床數'
    })

    df_chimei['醫院'] = '奇美醫院'
    return df_chimei

# 定義函數來獲取並處理成大醫院的數據
def get_ncku_data():
    url_ncku = "https://web.hosp.ncku.edu.tw/nckm/Bedstatus/BedStatus.aspx"
    response_ncku = requests.get(url_ncku)
    response_ncku.encoding = 'utf-8'

    soup_ncku = BeautifulSoup(response_ncku.text, 'html.parser')
    table_ncku = soup_ncku.find('table', {'id': 'GV_EmgInsure'})

    data_ncku = []
    rows_ncku = table_ncku.find_all('tr')

    headers_ncku = [th.text.strip() for th in rows_ncku[0].find_all('th')]

    for row in rows_ncku[1:]:
        cols = row.find_all('td')
        cols = [col.text.strip() for col in cols]
        data_ncku.append(cols)

    df_ncku = pd.DataFrame(data_ncku, columns=headers_ncku)
    df_ncku['醫院'] = '成大醫院'

    # 計算佔床率並添加到成大醫院的 DataFrame
    df_ncku['佔床率'] = (df_ncku['佔床數'].astype(int) / df_ncku['病床數'].astype(int) * 100).round(2).astype(str) + '%'

    # 將佔床率移動到倒數第二欄
    cols = df_ncku.columns.tolist()
    cols.insert(-1, cols.pop(cols.index('佔床率')))
    df_ncku = df_ncku[cols]

    return df_ncku

# 主程序
st.title("醫院病床狀況")

# 多項選擇下拉式選單,預設選項為"請選擇"
options = st.multiselect(
    "選擇要查看的醫院",
    ["台南市立醫院", "奇美醫院", "成大醫院"],
    default=[]
)

# 查詢按鈕
if st.button("查詢"):
    if not options:
        st.warning("請選擇至少一個醫院進行查詢。")
    else:
        selected_data = []

        if "台南市立醫院" in options:
            df_tmh = get_tmh_data()
            selected_data.append(df_tmh)

        if "奇美醫院" in options:
            df_chimei = get_chimei_data()
            selected_data.append(df_chimei)

        if "成大醫院" in options:
            df_ncku = get_ncku_data()
            selected_data.append(df_ncku)

        if selected_data:
            df_combined = pd.concat(selected_data, ignore_index=True)
            st.write(df_combined)
            
            # 美化病床類別分布直條圖
            fig_bar = px.bar(df_combined, x='病床類別', y='病床數', color='醫院', title='病床類別分布',
                             text='病床數', barmode='group',
                             color_discrete_sequence=px.colors.qualitative.Pastel)
            fig_bar.update_traces(texttemplate='%{text:.2s}', textposition='outside')
            fig_bar.update_layout(uniformtext_minsize=8, uniformtext_mode='hide',
                                  xaxis_title='病床類別', yaxis_title='病床數', 
                                  title_x=0.5, template='plotly_white')
            st.plotly_chart(fig_bar)
            
            # 病床類別分布圓餅圖
            fig_pie_beds = px.pie(df_combined, names='病床類別', values='病床數', title='病床類別分布',
                                  color_discrete_sequence=px.colors.qualitative.Pastel)
            st.plotly_chart(fig_pie_beds)
            
            # 空床數分布圓餅圖
            fig_pie_empty = px.pie(df_combined, names='病床類別', values='空床數', title='空床數分布',
                                   color_discrete_sequence=px.colors.qualitative.Pastel)
            st.plotly_chart(fig_pie_empty)