Spaces:
Sleeping
Sleeping
File size: 5,376 Bytes
59cb268 09027c4 59cb268 b9dd953 59cb268 0cbf01b fbb0e76 59cb268 fbb0e76 0cbf01b 59cb268 09027c4 0cbf01b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import requests
from bs4 import BeautifulSoup
import pandas as pd
import streamlit as st
import plotly.express as px
# 定義函數來獲取並處理台南市立醫院的數據
def get_tmh_data():
url_tmh = "https://www.tmh.org.tw/tmh2016/ImpBD.aspx?Kind=2"
response_tmh = requests.get(url_tmh)
response_tmh.encoding = 'utf-8'
soup_tmh = BeautifulSoup(response_tmh.text, 'html.parser')
table_tmh = soup_tmh.find('table', {'class': 'RegTable'})
data_tmh = []
rows_tmh = table_tmh.find_all('tr')
headers_tmh = [th.text.strip() for th in rows_tmh[0].find_all('th')]
for row in rows_tmh[1:]:
cols = row.find_all('td')
cols = [col.text.strip() for col in cols]
data_tmh.append(cols)
df_tmh = pd.DataFrame(data_tmh, columns=headers_tmh)
# 更改台南市立醫院的列名
df_tmh = df_tmh.rename(columns={
'病床種類': '病床類別',
'床位別數': '病床數',
'住院人數': '佔床數'
})
df_tmh['醫院'] = '台南市立醫院'
return df_tmh
# 定義函數來獲取並處理奇美醫院的數據
def get_chimei_data():
url_chimei = "https://www.chimei.org.tw/%E4%BD%94%E5%BA%8A%E7%8E%87%E6%9F%A5%E8%A9%A2/%E4%BD%94%E5%BA%8A%E7%8E%87%E6%9F%A5%E8%A9%A2.aspx?ihospital=10&ffloor="
response_chimei = requests.get(url_chimei)
response_chimei.encoding = 'utf-8'
soup_chimei = BeautifulSoup(response_chimei.text, 'html.parser')
table_chimei = soup_chimei.find('table', {'id': 'DG1'})
data_chimei = []
rows_chimei = table_chimei.find_all('tr')
headers_chimei = [th.text.strip() for th in rows_chimei[0].find_all('td')]
for row in rows_chimei[1:]:
cols = row.find_all('td')
cols = [col.text.strip() for col in cols]
data_chimei.append(cols)
df_chimei = pd.DataFrame(data_chimei, columns=headers_chimei)
# 更改奇美醫院的列名
df_chimei = df_chimei.rename(columns={
'總床數': '病床數'
})
df_chimei['醫院'] = '奇美醫院'
return df_chimei
# 定義函數來獲取並處理成大醫院的數據
def get_ncku_data():
url_ncku = "https://web.hosp.ncku.edu.tw/nckm/Bedstatus/BedStatus.aspx"
response_ncku = requests.get(url_ncku)
response_ncku.encoding = 'utf-8'
soup_ncku = BeautifulSoup(response_ncku.text, 'html.parser')
table_ncku = soup_ncku.find('table', {'id': 'GV_EmgInsure'})
data_ncku = []
rows_ncku = table_ncku.find_all('tr')
headers_ncku = [th.text.strip() for th in rows_ncku[0].find_all('th')]
for row in rows_ncku[1:]:
cols = row.find_all('td')
cols = [col.text.strip() for col in cols]
data_ncku.append(cols)
df_ncku = pd.DataFrame(data_ncku, columns=headers_ncku)
df_ncku['醫院'] = '成大醫院'
# 計算佔床率並添加到成大醫院的 DataFrame
df_ncku['佔床率'] = (df_ncku['佔床數'].astype(int) / df_ncku['病床數'].astype(int) * 100).round(2).astype(str) + '%'
# 將佔床率移動到倒數第二欄
cols = df_ncku.columns.tolist()
cols.insert(-1, cols.pop(cols.index('佔床率')))
df_ncku = df_ncku[cols]
return df_ncku
# 主程序
st.title("醫院病床狀況")
# 多項選擇下拉式選單,預設選項為"請選擇"
options = st.multiselect(
"選擇要查看的醫院",
["台南市立醫院", "奇美醫院", "成大醫院"],
default=[]
)
# 查詢按鈕
if st.button("查詢"):
if not options:
st.warning("請選擇至少一個醫院進行查詢。")
else:
selected_data = []
if "台南市立醫院" in options:
df_tmh = get_tmh_data()
selected_data.append(df_tmh)
if "奇美醫院" in options:
df_chimei = get_chimei_data()
selected_data.append(df_chimei)
if "成大醫院" in options:
df_ncku = get_ncku_data()
selected_data.append(df_ncku)
if selected_data:
df_combined = pd.concat(selected_data, ignore_index=True)
st.write(df_combined)
# 美化病床類別分布直條圖
fig_bar = px.bar(df_combined, x='病床類別', y='病床數', color='醫院', title='病床類別分布',
text='病床數', barmode='group',
color_discrete_sequence=px.colors.qualitative.Pastel)
fig_bar.update_traces(texttemplate='%{text:.2s}', textposition='outside')
fig_bar.update_layout(uniformtext_minsize=8, uniformtext_mode='hide',
xaxis_title='病床類別', yaxis_title='病床數',
title_x=0.5, template='plotly_white')
st.plotly_chart(fig_bar)
# 病床類別分布圓餅圖
fig_pie_beds = px.pie(df_combined, names='病床類別', values='病床數', title='病床類別分布',
color_discrete_sequence=px.colors.qualitative.Pastel)
st.plotly_chart(fig_pie_beds)
# 空床數分布圓餅圖
fig_pie_empty = px.pie(df_combined, names='病床類別', values='空床數', title='空床數分布',
color_discrete_sequence=px.colors.qualitative.Pastel)
st.plotly_chart(fig_pie_empty)
|