Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import asyncio | |
from langchain_core.prompts import PromptTemplate | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
import google.generativeai as genai | |
from langchain.chains.question_answering import load_qa_chain | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
# Gemini PDF QA System | |
async def initialize_gemini(file_path, question): | |
genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) | |
model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3) | |
prompt_template = """Answer the question as precise as possible using the provided context. If the answer is | |
not contained in the context, say "answer not available in context" \n\n | |
Context: \n {context}?\n | |
Question: \n {question} \n | |
Answer: | |
""" | |
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) | |
if os.path.exists(file_path): | |
pdf_loader = PyPDFLoader(file_path) | |
pages = pdf_loader.load_and_split() | |
context = "\n".join(str(page.page_content) for page in pages[:30]) | |
stuff_chain = load_qa_chain(model, chain_type="stuff", prompt=prompt) | |
stuff_answer = await stuff_chain.acall({"input_documents": pages, "question": question, "context": context}, return_only_outputs=True) | |
return stuff_answer['output_text'] | |
else: | |
return "Error: Unable to process the document. Please ensure the PDF file is valid." | |
# Mistral Text Completion | |
class MistralModel: | |
def __init__(self): | |
self.model_path = "nvidia/Mistral-NeMo-Minitron-8B-Base" | |
self.tokenizer = AutoTokenizer.from_pretrained(self.model_path) | |
self.device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
self.dtype = torch.bfloat16 | |
self.model = AutoModelForCausalLM.from_pretrained(self.model_path, torch_dtype=self.dtype, device_map=self.device) | |
def generate_text(self, prompt, max_length=50): | |
inputs = self.tokenizer.encode(prompt, return_tensors='pt').to(self.model.device) | |
outputs = self.model.generate(inputs, max_length=max_length) | |
return self.tokenizer.decode(outputs[0]) | |
mistral_model = MistralModel() | |
# Combined function for both models | |
async def process_input(file, question): | |
gemini_answer = await initialize_gemini(file.name, question) | |
mistral_answer = mistral_model.generate_text(question) | |
return gemini_answer, mistral_answer | |
# Gradio Interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# PDF Question Answering and Text Completion System") | |
input_file = gr.File(label="Upload PDF File") | |
input_question = gr.Textbox(label="Ask a question or provide a prompt") | |
process_button = gr.Button("Process") | |
output_text_gemini = gr.Textbox(label="Answer - Gemini") | |
output_text_mistral = gr.Textbox(label="Answer - Mistral") | |
process_button.click( | |
fn=process_input, | |
inputs=[input_file, input_question], | |
outputs=[output_text_gemini, output_text_mistral] | |
) | |
demo.launch() |