Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import asyncio | |
from langchain_core.prompts import PromptTemplate | |
from langchain_community.output_parsers.rail_parser import GuardrailsOutputParser | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
import google.generativeai as genai | |
from langchain.chains.question_answering import load_qa_chain | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
# Gemini PDF QA System | |
async def initialize(file_path, question): | |
genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) | |
model = genai.GenerativeModel('gemini-pro') | |
model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3) | |
prompt_template = """Answer the question as precise as possible using the provided context. If the answer is | |
not contained in the context, say "answer not available in context" \n\n | |
Context: \n {context}?\n | |
Question: \n {question} \n | |
Answer: | |
""" | |
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) | |
if os.path.exists(file_path): | |
pdf_loader = PyPDFLoader(file_path) | |
pages = pdf_loader.load_and_split() | |
context = "\n".join(str(page.page_content) for page in pages[:30]) | |
stuff_chain = load_qa_chain(model, chain_type="stuff", prompt=prompt) | |
stuff_answer = await stuff_chain({"input_documents": pages, "question": question, "context": context}, return_only_outputs=True) | |
return stuff_answer['output_text'] | |
else: | |
return "Error: Unable to process the document. Please ensure the PDF file is valid." | |
async def pdf_qa(file, question): | |
answer = await initialize(file.name, question) | |
return answer | |
# Mistral Text Completion | |
def load_mistral_model(): | |
model_path = "nvidia/Mistral-NeMo-Minitron-8B-Base" | |
tokenizer = AutoTokenizer.from_pretrained(model_path) | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
dtype = torch.bfloat16 | |
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=dtype, device_map=device) | |
return tokenizer, model | |
def generate_text(prompt, max_length=50): | |
tokenizer, model = load_mistral_model() | |
inputs = tokenizer.encode(prompt, return_tensors='pt').to(model.device) | |
outputs = model.generate(inputs, max_length=max_length) | |
return tokenizer.decode(outputs[0]) | |
# Gradio Interface | |
def pdf_qa_wrapper(file, question): | |
return asyncio.run(pdf_qa(file, question)) | |
with gr.Blocks() as demo: | |
gr.Markdown("# Combined PDF QA and Text Completion System") | |
with gr.Tab("PDF Question Answering"): | |
input_file = gr.File(label="Upload PDF File") | |
input_question = gr.Textbox(label="Ask about the document") | |
output_text_gemini = gr.Textbox(label="Answer - GeminiPro") | |
pdf_qa_button = gr.Button("Ask Question") | |
with gr.Tab("Text Completion"): | |
input_prompt = gr.Textbox(label="Enter prompt for text completion") | |
output_text_mistral = gr.Textbox(label="Completed Text - Mistral") | |
complete_text_button = gr.Button("Complete Text") | |
pdf_qa_button.click(pdf_qa_wrapper, inputs=[input_file, input_question], outputs=output_text_gemini) | |
complete_text_button.click(generate_text, inputs=input_prompt, outputs=output_text_mistral) | |
demo.launch() |