import os import gradio as gr import asyncio from langchain_core.prompts import PromptTemplate from langchain_community.output_parsers.rail_parser import GuardrailsOutputParser from langchain_community.document_loaders import PyPDFLoader from langchain_google_genai import ChatGoogleGenerativeAI import google.generativeai as genai from langchain.chains.question_answering import load_qa_chain import torch from transformers import AutoTokenizer, AutoModelForCausalLM # Gemini PDF QA System async def initialize(file_path, question): genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) model = genai.GenerativeModel('gemini-pro') model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3) prompt_template = """Answer the question as precise as possible using the provided context. If the answer is not contained in the context, say "answer not available in context" \n\n Context: \n {context}?\n Question: \n {question} \n Answer: """ prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) if os.path.exists(file_path): pdf_loader = PyPDFLoader(file_path) pages = pdf_loader.load_and_split() context = "\n".join(str(page.page_content) for page in pages[:30]) stuff_chain = load_qa_chain(model, chain_type="stuff", prompt=prompt) stuff_answer = await stuff_chain({"input_documents": pages, "question": question, "context": context}, return_only_outputs=True) return stuff_answer['output_text'] else: return "Error: Unable to process the document. Please ensure the PDF file is valid." async def pdf_qa(file, question): answer = await initialize(file.name, question) return answer # Mistral Text Completion def load_mistral_model(): model_path = "nvidia/Mistral-NeMo-Minitron-8B-Base" tokenizer = AutoTokenizer.from_pretrained(model_path) device = 'cuda' if torch.cuda.is_available() else 'cpu' dtype = torch.bfloat16 model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=dtype, device_map=device) return tokenizer, model def generate_text(prompt, max_length=50): tokenizer, model = load_mistral_model() inputs = tokenizer.encode(prompt, return_tensors='pt').to(model.device) outputs = model.generate(inputs, max_length=max_length) return tokenizer.decode(outputs[0]) # Gradio Interface def pdf_qa_wrapper(file, question): return asyncio.run(pdf_qa(file, question)) with gr.Blocks() as demo: gr.Markdown("# Combined PDF QA and Text Completion System") with gr.Tab("PDF Question Answering"): input_file = gr.File(label="Upload PDF File") input_question = gr.Textbox(label="Ask about the document") output_text_gemini = gr.Textbox(label="Answer - GeminiPro") pdf_qa_button = gr.Button("Ask Question") with gr.Tab("Text Completion"): input_prompt = gr.Textbox(label="Enter prompt for text completion") output_text_mistral = gr.Textbox(label="Completed Text - Mistral") complete_text_button = gr.Button("Complete Text") pdf_qa_button.click(pdf_qa_wrapper, inputs=[input_file, input_question], outputs=output_text_gemini) complete_text_button.click(generate_text, inputs=input_prompt, outputs=output_text_mistral) demo.launch()