import os import time import logging mainlogger = logging.getLogger('mainlogger') import torch import torchvision import pytorch_lightning as pl from pytorch_lightning.callbacks import Callback from pytorch_lightning.utilities import rank_zero_only from pytorch_lightning.utilities import rank_zero_info from utils.save_video import log_local, prepare_to_log class ImageLogger(Callback): def __init__(self, batch_frequency, max_images=8, clamp=True, rescale=True, save_dir=None, \ to_local=False, log_images_kwargs=None): super().__init__() self.rescale = rescale self.batch_freq = batch_frequency self.max_images = max_images self.to_local = to_local self.clamp = clamp self.log_images_kwargs = log_images_kwargs if log_images_kwargs else {} if self.to_local: ## default save dir self.save_dir = os.path.join(save_dir, "images") os.makedirs(os.path.join(self.save_dir, "train"), exist_ok=True) os.makedirs(os.path.join(self.save_dir, "val"), exist_ok=True) def log_to_tensorboard(self, pl_module, batch_logs, filename, split, save_fps=8): """ log images and videos to tensorboard """ global_step = pl_module.global_step for key in batch_logs: value = batch_logs[key] tag = "gs%d-%s/%s-%s"%(global_step, split, filename, key) if isinstance(value, list) and isinstance(value[0], str): captions = ' |------| '.join(value) pl_module.logger.experiment.add_text(tag, captions, global_step=global_step) elif isinstance(value, torch.Tensor) and value.dim() == 5: video = value n = video.shape[0] video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(n), padding=0) for framesheet in video] #[3, n*h, 1*w] grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [t, 3, n*h, w] grid = (grid + 1.0) / 2.0 grid = grid.unsqueeze(dim=0) pl_module.logger.experiment.add_video(tag, grid, fps=save_fps, global_step=global_step) elif isinstance(value, torch.Tensor) and value.dim() == 4: img = value grid = torchvision.utils.make_grid(img, nrow=int(n), padding=0) grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w pl_module.logger.experiment.add_image(tag, grid, global_step=global_step) else: pass @rank_zero_only def log_batch_imgs(self, pl_module, batch, batch_idx, split="train"): """ generate images, then save and log to tensorboard """ skip_freq = self.batch_freq if split == "train" else 5 if (batch_idx+1) % skip_freq == 0: is_train = pl_module.training if is_train: pl_module.eval() torch.cuda.empty_cache() with torch.no_grad(): log_func = pl_module.log_images batch_logs = log_func(batch, split=split, **self.log_images_kwargs) ## process: move to CPU and clamp batch_logs = prepare_to_log(batch_logs, self.max_images, self.clamp) torch.cuda.empty_cache() filename = "ep{}_idx{}_rank{}".format( pl_module.current_epoch, batch_idx, pl_module.global_rank) if self.to_local: mainlogger.info("Log [%s] batch <%s> to local ..."%(split, filename)) filename = "gs{}_".format(pl_module.global_step) + filename log_local(batch_logs, os.path.join(self.save_dir, split), filename, save_fps=10) else: mainlogger.info("Log [%s] batch <%s> to tensorboard ..."%(split, filename)) self.log_to_tensorboard(pl_module, batch_logs, filename, split, save_fps=10) mainlogger.info('Finish!') if is_train: pl_module.train() def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx=None): if self.batch_freq != -1 and pl_module.logdir: self.log_batch_imgs(pl_module, batch, batch_idx, split="train") def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx=None): ## different with validation_step() that saving the whole validation set and only keep the latest, ## it records the performance of every validation (without overwritten) by only keep a subset if self.batch_freq != -1 and pl_module.logdir: self.log_batch_imgs(pl_module, batch, batch_idx, split="val") if hasattr(pl_module, 'calibrate_grad_norm'): if (pl_module.calibrate_grad_norm and batch_idx % 25 == 0) and batch_idx > 0: self.log_gradients(trainer, pl_module, batch_idx=batch_idx) class CUDACallback(Callback): # see https://github.com/SeanNaren/minGPT/blob/master/mingpt/callback.py def on_train_epoch_start(self, trainer, pl_module): # Reset the memory use counter # lightning update if int((pl.__version__).split('.')[1])>=7: gpu_index = trainer.strategy.root_device.index else: gpu_index = trainer.root_gpu torch.cuda.reset_peak_memory_stats(gpu_index) torch.cuda.synchronize(gpu_index) self.start_time = time.time() def on_train_epoch_end(self, trainer, pl_module): if int((pl.__version__).split('.')[1])>=7: gpu_index = trainer.strategy.root_device.index else: gpu_index = trainer.root_gpu torch.cuda.synchronize(gpu_index) max_memory = torch.cuda.max_memory_allocated(gpu_index) / 2 ** 20 epoch_time = time.time() - self.start_time try: max_memory = trainer.training_type_plugin.reduce(max_memory) epoch_time = trainer.training_type_plugin.reduce(epoch_time) rank_zero_info(f"Average Epoch time: {epoch_time:.2f} seconds") rank_zero_info(f"Average Peak memory {max_memory:.2f}MiB") except AttributeError: pass