Spaces:
Running
on
Zero
Running
on
Zero
Yardenfren
commited on
Update inf.py
Browse files
inf.py
CHANGED
@@ -18,15 +18,6 @@ class InferencePipeline:
|
|
18 |
self.hf_token = hf_token
|
19 |
self.base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
20 |
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
21 |
-
# if self.device.type == 'cpu':
|
22 |
-
# self.pipe = StableDiffusionXLPipeline.from_pretrained(
|
23 |
-
# self.base_model_id, use_auth_token=self.hf_token)
|
24 |
-
# else:
|
25 |
-
# self.pipe = StableDiffusionXLPipeline.from_pretrained(
|
26 |
-
# self.base_model_id,
|
27 |
-
# torch_dtype=torch.float16,
|
28 |
-
# use_auth_token=self.hf_token)
|
29 |
-
# self.pipe = self.pipe.to(self.device)
|
30 |
self.pipe = StableDiffusionXLPipeline.from_pretrained(
|
31 |
self.base_model_id,
|
32 |
torch_dtype=torch.float16,
|
@@ -98,15 +89,10 @@ class InferencePipeline:
|
|
98 |
|
99 |
self.content_lora_model_id = content_lora_model_id
|
100 |
self.style_lora_model_id = style_lora_model_id
|
101 |
-
|
102 |
@spaces.GPU
|
103 |
-
def
|
104 |
-
self,
|
105 |
-
content_lora_model_id: str,
|
106 |
-
style_lora_model_id: str,
|
107 |
prompt: str,
|
108 |
-
content_alpha: float,
|
109 |
-
style_alpha: float,
|
110 |
seed: int,
|
111 |
n_steps: int,
|
112 |
guidance_scale: float,
|
@@ -114,13 +100,8 @@ class InferencePipeline:
|
|
114 |
) -> PIL.Image.Image:
|
115 |
if not torch.cuda.is_available():
|
116 |
raise gr.Error('CUDA is not available.')
|
117 |
-
|
118 |
-
self.load_pipe(content_lora_model_id, style_lora_model_id, content_alpha, style_alpha)
|
119 |
-
|
120 |
self.pipe.to("cuda")
|
121 |
-
|
122 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
123 |
-
print(self.pipe.device)
|
124 |
out = self.pipe(
|
125 |
prompt,
|
126 |
num_inference_steps=n_steps,
|
@@ -129,3 +110,26 @@ class InferencePipeline:
|
|
129 |
num_images_per_prompt=num_images_per_prompt,
|
130 |
) # type: ignore
|
131 |
return out.images
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
self.hf_token = hf_token
|
19 |
self.base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
20 |
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
self.pipe = StableDiffusionXLPipeline.from_pretrained(
|
22 |
self.base_model_id,
|
23 |
torch_dtype=torch.float16,
|
|
|
89 |
|
90 |
self.content_lora_model_id = content_lora_model_id
|
91 |
self.style_lora_model_id = style_lora_model_id
|
92 |
+
|
93 |
@spaces.GPU
|
94 |
+
def inference(self,
|
|
|
|
|
|
|
95 |
prompt: str,
|
|
|
|
|
96 |
seed: int,
|
97 |
n_steps: int,
|
98 |
guidance_scale: float,
|
|
|
100 |
) -> PIL.Image.Image:
|
101 |
if not torch.cuda.is_available():
|
102 |
raise gr.Error('CUDA is not available.')
|
|
|
|
|
|
|
103 |
self.pipe.to("cuda")
|
|
|
104 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
|
|
105 |
out = self.pipe(
|
106 |
prompt,
|
107 |
num_inference_steps=n_steps,
|
|
|
110 |
num_images_per_prompt=num_images_per_prompt,
|
111 |
) # type: ignore
|
112 |
return out.images
|
113 |
+
|
114 |
+
|
115 |
+
def run(
|
116 |
+
self,
|
117 |
+
content_lora_model_id: str,
|
118 |
+
style_lora_model_id: str,
|
119 |
+
prompt: str,
|
120 |
+
content_alpha: float,
|
121 |
+
style_alpha: float,
|
122 |
+
seed: int,
|
123 |
+
n_steps: int,
|
124 |
+
guidance_scale: float,
|
125 |
+
num_images_per_prompt: int = 1
|
126 |
+
) -> PIL.Image.Image:
|
127 |
+
|
128 |
+
self.load_pipe(content_lora_model_id, style_lora_model_id, content_alpha, style_alpha)
|
129 |
+
|
130 |
+
return self.inference(
|
131 |
+
prompt=prompt,
|
132 |
+
n_steps=n_steps,
|
133 |
+
guidance_scale=guidance_scale,
|
134 |
+
num_images_per_prompt=num_images_per_prompt,
|
135 |
+
)
|