Spaces:
Paused
Paused
File size: 10,120 Bytes
c954f09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
import numpy as np
import torch
from .base_model import BaseModel
from . import networks
from .patchnce import PatchNCELoss
import util.util as util
class CWRModel(BaseModel):
""" This class implements CWR model, described in the paper
Single Underwater Image Restoration by contrastive learning
Junlin Han, Mehrdad Shoeiby, Tim Malthus, Elizabeth Botha, Janet Anstee, Saeed Anwar, Ran Wei, Lars Petersson, Mohammad Ali Armin
International Geoscience and Remote Sensing Symposium (IGARSS), 2021
The code borrows heavily from the PyTorch implementation of CycleGAN and CUT
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/taesungp/contrastive-unpaired-translation
"""
@staticmethod
def modify_commandline_options(parser, is_train=True):
""" Configures options specific for CUT model
"""
parser.add_argument('--lambda_GAN', type=float, default=1.0, help='weight for GAN loss:GAN(G(X))')
parser.add_argument('--lambda_NCE', type=float, default=1.0, help='weight for NCE loss: NCE(G(X), X)')
parser.add_argument('--lambda_IDT', type=float, default=10.0, help='weight for NCE loss: NCE(G(X), X)')
parser.add_argument('--nce_idt', type=util.str2bool, nargs='?', const=True, default=False, help='use NCE loss for identity mapping: NCE(G(Y), Y))')
parser.add_argument('--nce_layers', type=str, default='0,4,8,12,16', help='compute NCE loss on which layers')
parser.add_argument('--nce_includes_all_negatives_from_minibatch',
type=util.str2bool, nargs='?', const=True, default=False,
help='(used for single image translation) If True, include the negatives from the other samples of the minibatch when computing the contrastive loss. Please see models/patchnce.py for more details.')
parser.add_argument('--netF', type=str, default='mlp_sample', choices=['sample', 'reshape', 'mlp_sample'], help='how to downsample the feature map')
parser.add_argument('--netF_nc', type=int, default=256)
parser.add_argument('--nce_T', type=float, default=0.07, help='temperature for NCE loss')
parser.add_argument('--num_patches', type=int, default=256, help='number of patches per layer')
parser.add_argument('--flip_equivariance',
type=util.str2bool, nargs='?', const=True, default=False,
help="Enforce flip-equivariance as additional regularization. It's used by FastCUT, but not CWR")
parser.set_defaults(pool_size=0) # no image pooling
opt, _ = parser.parse_known_args()
parser.set_defaults(nce_idt=True, lambda_NCE=1.0)
return parser
def __init__(self, opt):
BaseModel.__init__(self, opt)
# specify the training losses you want to print out.
# The training/test scripts will call <BaseModel.get_current_losses>
self.loss_names = ['G_GAN', 'D_real', 'D_fake', 'G', 'NCE', 'idt']
self.visual_names = ['real_A', 'fake_B', 'real_B']
self.nce_layers = [int(i) for i in self.opt.nce_layers.split(',')]
if opt.nce_idt and self.isTrain:
self.loss_names += ['NCE_Y']
self.visual_names += ['idt_B']
if self.isTrain:
self.model_names = ['G', 'F', 'D']
else: # during test time, only load G
self.model_names = ['G']
# define networks (both generator and discriminator)
self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, opt.normG, not opt.no_dropout, opt.init_type, opt.init_gain, opt.no_antialias, opt.no_antialias_up, self.gpu_ids, opt)
self.netF = networks.define_F(opt.input_nc, opt.netF, opt.normG, not opt.no_dropout, opt.init_type, opt.init_gain, opt.no_antialias, self.gpu_ids, opt)
if self.isTrain:
self.netD = networks.define_D(opt.output_nc, opt.ndf, opt.netD, opt.n_layers_D, opt.normD, opt.init_type, opt.init_gain, opt.no_antialias, self.gpu_ids, opt)
# define loss functions
self.criterionGAN = networks.GANLoss(opt.gan_mode).to(self.device)
self.criterionNCE = []
for nce_layer in self.nce_layers:
self.criterionNCE.append(PatchNCELoss(opt).to(self.device))
self.criterionIdt = torch.nn.L1Loss().to(self.device)
self.optimizer_G = torch.optim.Adam(self.netG.parameters(), lr=opt.lr, betas=(opt.beta1, opt.beta2))
self.optimizer_D = torch.optim.Adam(self.netD.parameters(), lr=opt.lr, betas=(opt.beta1, opt.beta2))
self.optimizers.append(self.optimizer_G)
self.optimizers.append(self.optimizer_D)
def data_dependent_initialize(self, data):
"""
The feature network netF is defined in terms of the shape of the intermediate, extracted
features of the encoder portion of netG. Because of this, the weights of netF are
initialized at the first feedforward pass with some input images.
Please also see PatchSampleF.create_mlp(), which is called at the first forward() call.
"""
self.set_input(data)
bs_per_gpu = self.real_A.size(0) // max(len(self.opt.gpu_ids), 1)
self.real_A = self.real_A[:bs_per_gpu]
self.real_B = self.real_B[:bs_per_gpu]
self.forward() # compute fake images: G(A)
if self.opt.isTrain:
self.compute_D_loss().backward() # calculate gradients for D
self.compute_G_loss().backward() # calculate graidents for G
if self.opt.lambda_NCE > 0.0:
self.optimizer_F = torch.optim.Adam(self.netF.parameters(), lr=self.opt.lr, betas=(self.opt.beta1, self.opt.beta2))
self.optimizers.append(self.optimizer_F)
def optimize_parameters(self):
# forward
self.forward()
# update D
self.set_requires_grad(self.netD, True)
self.optimizer_D.zero_grad()
self.loss_D = self.compute_D_loss()
self.loss_D.backward()
self.optimizer_D.step()
# update G
self.set_requires_grad(self.netD, False)
self.optimizer_G.zero_grad()
if self.opt.netF == 'mlp_sample':
self.optimizer_F.zero_grad()
self.loss_G = self.compute_G_loss()
self.loss_G.backward()
self.optimizer_G.step()
if self.opt.netF == 'mlp_sample':
self.optimizer_F.step()
def set_input(self, input):
"""Unpack input data from the dataloader and perform necessary pre-processing steps.
Parameters:
input (dict): include the data itself and its metadata information.
The option 'direction' can be used to swap domain A and domain B.
"""
AtoB = self.opt.direction == 'AtoB'
self.real_A = input['A' if AtoB else 'B'].to(self.device)
self.real_B = input['B' if AtoB else 'A'].to(self.device)
self.image_paths = input['A_paths' if AtoB else 'B_paths']
def forward(self):
"""Run forward pass; called by both functions <optimize_parameters> and <test>."""
self.real = torch.cat((self.real_A, self.real_B), dim=0) if self.opt.nce_idt and self.opt.isTrain else self.real_A
if self.opt.flip_equivariance:
self.flipped_for_equivariance = self.opt.isTrain and (np.random.random() < 0.5)
if self.flipped_for_equivariance:
self.real = torch.flip(self.real, [3])
self.fake = self.netG(self.real)
self.fake_B = self.fake[:self.real_A.size(0)]
if self.opt.nce_idt:
self.idt_B = self.fake[self.real_A.size(0):]
def compute_D_loss(self):
"""Calculate GAN loss for the discriminator"""
fake = self.fake_B.detach()
# Fake; stop backprop to the generator by detaching fake_B
pred_fake = self.netD(fake)
self.loss_D_fake = self.criterionGAN(pred_fake, False).mean()
# Real
self.pred_real = self.netD(self.real_B)
loss_D_real = self.criterionGAN(self.pred_real, True)
self.loss_D_real = loss_D_real.mean()
# combine loss and calculate gradients
self.loss_D = (self.loss_D_fake + self.loss_D_real) * 0.5
return self.loss_D
def compute_G_loss(self):
"""Calculate GAN and NCE loss for the generator"""
fake = self.fake_B
# First, G(A) should fake the discriminator
if self.opt.lambda_GAN > 0.0:
pred_fake = self.netD(fake)
self.loss_G_GAN = self.criterionGAN(pred_fake, True).mean() * self.opt.lambda_GAN
else:
self.loss_G_GAN = 0.0
if self.opt.lambda_NCE > 0.0:
self.loss_NCE = self.calculate_NCE_loss(self.real_A, self.fake_B)
else:
self.loss_NCE, self.loss_NCE_bd = 0.0, 0.0
if self.opt.nce_idt and self.opt.lambda_NCE > 0.0:
self.loss_NCE_Y = 0
loss_NCE_both = (self.loss_NCE + self.loss_NCE_Y)
self.loss_idt = self.criterionIdt(self.idt_B, self.real_B) * self.opt.lambda_IDT
else:
loss_NCE_both = self.loss_NCE
self.loss_G = self.loss_G_GAN + loss_NCE_both + self.loss_idt
return self.loss_G
def calculate_NCE_loss(self, src, tgt):
n_layers = len(self.nce_layers)
feat_q = self.netG(tgt, self.nce_layers, encode_only=True)
if self.opt.flip_equivariance and self.flipped_for_equivariance:
feat_q = [torch.flip(fq, [3]) for fq in feat_q]
feat_k = self.netG(src, self.nce_layers, encode_only=True)
feat_k_pool, sample_ids = self.netF(feat_k, self.opt.num_patches, None)
feat_q_pool, _ = self.netF(feat_q, self.opt.num_patches, sample_ids)
total_nce_loss = 0.0
for f_q, f_k, crit, nce_layer in zip(feat_q_pool, feat_k_pool, self.criterionNCE, self.nce_layers):
loss = crit(f_q, f_k) * self.opt.lambda_NCE
total_nce_loss += loss.mean()
return total_nce_loss / n_layers
|