File size: 10,120 Bytes
c954f09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import numpy as np
import torch
from .base_model import BaseModel
from . import networks
from .patchnce import PatchNCELoss
import util.util as util


class CWRModel(BaseModel):
    """ This class implements CWR model, described in the paper
    Single Underwater Image Restoration by contrastive learning
    Junlin Han, Mehrdad Shoeiby, Tim Malthus, Elizabeth Botha, Janet Anstee, Saeed Anwar, Ran Wei, Lars Petersson, Mohammad Ali Armin
    International Geoscience and Remote Sensing Symposium (IGARSS), 2021


    The code borrows heavily from the PyTorch implementation of CycleGAN and CUT
    https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
    https://github.com/taesungp/contrastive-unpaired-translation
    """
    @staticmethod
    def modify_commandline_options(parser, is_train=True):
        """  Configures options specific for CUT model
        """
        parser.add_argument('--lambda_GAN', type=float, default=1.0, help='weight for GAN loss:GAN(G(X))')
        parser.add_argument('--lambda_NCE', type=float, default=1.0, help='weight for NCE loss: NCE(G(X), X)')
        parser.add_argument('--lambda_IDT', type=float, default=10.0, help='weight for NCE loss: NCE(G(X), X)')
        parser.add_argument('--nce_idt', type=util.str2bool, nargs='?', const=True, default=False, help='use NCE loss for identity mapping: NCE(G(Y), Y))')
        parser.add_argument('--nce_layers', type=str, default='0,4,8,12,16', help='compute NCE loss on which layers')
        parser.add_argument('--nce_includes_all_negatives_from_minibatch',
                            type=util.str2bool, nargs='?', const=True, default=False,
                            help='(used for single image translation) If True, include the negatives from the other samples of the minibatch when computing the contrastive loss. Please see models/patchnce.py for more details.')
        parser.add_argument('--netF', type=str, default='mlp_sample', choices=['sample', 'reshape', 'mlp_sample'], help='how to downsample the feature map')
        parser.add_argument('--netF_nc', type=int, default=256)
        parser.add_argument('--nce_T', type=float, default=0.07, help='temperature for NCE loss')
        parser.add_argument('--num_patches', type=int, default=256, help='number of patches per layer')
        parser.add_argument('--flip_equivariance',
                            type=util.str2bool, nargs='?', const=True, default=False,
                            help="Enforce flip-equivariance as additional regularization. It's used by FastCUT, but not CWR")

        parser.set_defaults(pool_size=0)  # no image pooling

        opt, _ = parser.parse_known_args()

        parser.set_defaults(nce_idt=True, lambda_NCE=1.0)

        return parser

    def __init__(self, opt):
        BaseModel.__init__(self, opt)

        # specify the training losses you want to print out.
        # The training/test scripts will call <BaseModel.get_current_losses>
        self.loss_names = ['G_GAN', 'D_real', 'D_fake', 'G', 'NCE', 'idt']
        self.visual_names = ['real_A', 'fake_B', 'real_B']
        self.nce_layers = [int(i) for i in self.opt.nce_layers.split(',')]

        if opt.nce_idt and self.isTrain:
            self.loss_names += ['NCE_Y']
            self.visual_names += ['idt_B']

        if self.isTrain:
            self.model_names = ['G', 'F', 'D']
        else:  # during test time, only load G
            self.model_names = ['G']

        # define networks (both generator and discriminator)
        self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, opt.normG, not opt.no_dropout, opt.init_type, opt.init_gain, opt.no_antialias, opt.no_antialias_up, self.gpu_ids, opt)
        self.netF = networks.define_F(opt.input_nc, opt.netF, opt.normG, not opt.no_dropout, opt.init_type, opt.init_gain, opt.no_antialias, self.gpu_ids, opt)

        if self.isTrain:
            self.netD = networks.define_D(opt.output_nc, opt.ndf, opt.netD, opt.n_layers_D, opt.normD, opt.init_type, opt.init_gain, opt.no_antialias, self.gpu_ids, opt)

            # define loss functions
            self.criterionGAN = networks.GANLoss(opt.gan_mode).to(self.device)
            self.criterionNCE = []

            for nce_layer in self.nce_layers:
                self.criterionNCE.append(PatchNCELoss(opt).to(self.device))

            self.criterionIdt = torch.nn.L1Loss().to(self.device)
            self.optimizer_G = torch.optim.Adam(self.netG.parameters(), lr=opt.lr, betas=(opt.beta1, opt.beta2))
            self.optimizer_D = torch.optim.Adam(self.netD.parameters(), lr=opt.lr, betas=(opt.beta1, opt.beta2))
            self.optimizers.append(self.optimizer_G)
            self.optimizers.append(self.optimizer_D)

    def data_dependent_initialize(self, data):
        """
        The feature network netF is defined in terms of the shape of the intermediate, extracted
        features of the encoder portion of netG. Because of this, the weights of netF are
        initialized at the first feedforward pass with some input images.
        Please also see PatchSampleF.create_mlp(), which is called at the first forward() call.
        """
        self.set_input(data)
        bs_per_gpu = self.real_A.size(0) // max(len(self.opt.gpu_ids), 1)
        self.real_A = self.real_A[:bs_per_gpu]
        self.real_B = self.real_B[:bs_per_gpu]
        self.forward()                     # compute fake images: G(A)
        if self.opt.isTrain:
            self.compute_D_loss().backward()                  # calculate gradients for D
            self.compute_G_loss().backward()                   # calculate graidents for G
            if self.opt.lambda_NCE > 0.0:
                self.optimizer_F = torch.optim.Adam(self.netF.parameters(), lr=self.opt.lr, betas=(self.opt.beta1, self.opt.beta2))
                self.optimizers.append(self.optimizer_F)

    def optimize_parameters(self):
        # forward
        self.forward()

        # update D
        self.set_requires_grad(self.netD, True)
        self.optimizer_D.zero_grad()
        self.loss_D = self.compute_D_loss()
        self.loss_D.backward()
        self.optimizer_D.step()

        # update G
        self.set_requires_grad(self.netD, False)
        self.optimizer_G.zero_grad()
        if self.opt.netF == 'mlp_sample':
            self.optimizer_F.zero_grad()
        self.loss_G = self.compute_G_loss()
        self.loss_G.backward()
        self.optimizer_G.step()
        if self.opt.netF == 'mlp_sample':
            self.optimizer_F.step()

    def set_input(self, input):
        """Unpack input data from the dataloader and perform necessary pre-processing steps.
        Parameters:
            input (dict): include the data itself and its metadata information.
        The option 'direction' can be used to swap domain A and domain B.
        """
        AtoB = self.opt.direction == 'AtoB'
        self.real_A = input['A' if AtoB else 'B'].to(self.device)
        self.real_B = input['B' if AtoB else 'A'].to(self.device)
        self.image_paths = input['A_paths' if AtoB else 'B_paths']

    def forward(self):
        """Run forward pass; called by both functions <optimize_parameters> and <test>."""
        self.real = torch.cat((self.real_A, self.real_B), dim=0) if self.opt.nce_idt and self.opt.isTrain else self.real_A
        if self.opt.flip_equivariance:
            self.flipped_for_equivariance = self.opt.isTrain and (np.random.random() < 0.5)
            if self.flipped_for_equivariance:
                self.real = torch.flip(self.real, [3])

        self.fake = self.netG(self.real)
        self.fake_B = self.fake[:self.real_A.size(0)]
        if self.opt.nce_idt:
            self.idt_B = self.fake[self.real_A.size(0):]

    def compute_D_loss(self):
        """Calculate GAN loss for the discriminator"""
        fake = self.fake_B.detach()
        # Fake; stop backprop to the generator by detaching fake_B
        pred_fake = self.netD(fake)
        self.loss_D_fake = self.criterionGAN(pred_fake, False).mean()
        # Real
        self.pred_real = self.netD(self.real_B)
        loss_D_real = self.criterionGAN(self.pred_real, True)
        self.loss_D_real = loss_D_real.mean()

        # combine loss and calculate gradients
        self.loss_D = (self.loss_D_fake + self.loss_D_real) * 0.5
        return self.loss_D

    def compute_G_loss(self):
        """Calculate GAN and NCE loss for the generator"""
        fake = self.fake_B
        # First, G(A) should fake the discriminator
        if self.opt.lambda_GAN > 0.0:
            pred_fake = self.netD(fake)
            self.loss_G_GAN = self.criterionGAN(pred_fake, True).mean() * self.opt.lambda_GAN
        else:
            self.loss_G_GAN = 0.0

        if self.opt.lambda_NCE > 0.0:
            self.loss_NCE = self.calculate_NCE_loss(self.real_A, self.fake_B)
        else:
            self.loss_NCE, self.loss_NCE_bd = 0.0, 0.0

        if self.opt.nce_idt and self.opt.lambda_NCE > 0.0:
            self.loss_NCE_Y = 0
            loss_NCE_both = (self.loss_NCE + self.loss_NCE_Y)
            self.loss_idt = self.criterionIdt(self.idt_B, self.real_B) * self.opt.lambda_IDT
        else:
            loss_NCE_both = self.loss_NCE

        self.loss_G = self.loss_G_GAN + loss_NCE_both + self.loss_idt
        return self.loss_G

    def calculate_NCE_loss(self, src, tgt):
        n_layers = len(self.nce_layers)
        feat_q = self.netG(tgt, self.nce_layers, encode_only=True)

        if self.opt.flip_equivariance and self.flipped_for_equivariance:
            feat_q = [torch.flip(fq, [3]) for fq in feat_q]

        feat_k = self.netG(src, self.nce_layers, encode_only=True)
        feat_k_pool, sample_ids = self.netF(feat_k, self.opt.num_patches, None)
        feat_q_pool, _ = self.netF(feat_q, self.opt.num_patches, sample_ids)

        total_nce_loss = 0.0
        for f_q, f_k, crit, nce_layer in zip(feat_q_pool, feat_k_pool, self.criterionNCE, self.nce_layers):
            loss = crit(f_q, f_k) * self.opt.lambda_NCE
            total_nce_loss += loss.mean()

        return total_nce_loss / n_layers