Yarflam commited on
Commit
a8eef7d
·
1 Parent(s): a15cce2

Fix inference + scaling, update Gradio

Browse files
Files changed (7) hide show
  1. LICENSE +236 -0
  2. ModelLoader.py +27 -19
  3. README.md +15 -1
  4. app.py +18 -5
  5. examples/test.jpg +0 -0
  6. test.py +4 -2
  7. util/get_transform.py +16 -0
LICENSE ADDED
@@ -0,0 +1,236 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2021 Junlin Han
4
+ Copyright (c) 2024 Yarflam on Hugging Face (same license)
5
+
6
+ Permission is hereby granted, free of charge, to any person obtaining a copy
7
+ of this software and associated documentation files (the "Software"), to deal
8
+ in the Software without restriction, including without limitation the rights
9
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
+ copies of the Software, and to permit persons to whom the Software is
11
+ furnished to do so, subject to the following conditions:
12
+
13
+ The above copyright notice and this permission notice shall be included in all
14
+ copies or substantial portions of the Software.
15
+
16
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22
+ SOFTWARE.
23
+
24
+ --------------------------- LICENSE FOR CUT -------------------------------
25
+ Copyright (c) 2020, Taesung Park and Jun-Yan Zhu
26
+ All rights reserved.
27
+
28
+ Redistribution and use in source and binary forms, with or without
29
+ modification, are permitted provided that the following conditions are met:
30
+
31
+ * Redistributions of source code must retain the above copyright notice, this
32
+ list of conditions and the following disclaimer.
33
+
34
+ * Redistributions in binary form must reproduce the above copyright notice,
35
+ this list of conditions and the following disclaimer in the documentation
36
+ and/or other materials provided with the distribution.
37
+
38
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
39
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
40
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
41
+ DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
42
+ FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
43
+ DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
44
+ SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
45
+ CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
46
+ OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
47
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48
+
49
+ --------------------------- LICENSE FOR CycleGAN -------------------------------
50
+ -------------------https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix------
51
+ Copyright (c) 2017, Jun-Yan Zhu and Taesung Park
52
+ All rights reserved.
53
+
54
+ Redistribution and use in source and binary forms, with or without
55
+ modification, are permitted provided that the following conditions are met:
56
+
57
+ * Redistributions of source code must retain the above copyright notice, this
58
+ list of conditions and the following disclaimer.
59
+
60
+ * Redistributions in binary form must reproduce the above copyright notice,
61
+ this list of conditions and the following disclaimer in the documentation
62
+ and/or other materials provided with the distribution.
63
+
64
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
65
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
67
+ DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
68
+ FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69
+ DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
70
+ SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
71
+ CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
72
+ OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
73
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
74
+
75
+ --------------------------- LICENSE FOR stylegan2-pytorch ----------------------
76
+ ----------------https://github.com/rosinality/stylegan2-pytorch/----------------
77
+ MIT License
78
+
79
+ Copyright (c) 2019 Kim Seonghyeon
80
+
81
+ Permission is hereby granted, free of charge, to any person obtaining a copy
82
+ of this software and associated documentation files (the "Software"), to deal
83
+ in the Software without restriction, including without limitation the rights
84
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
85
+ copies of the Software, and to permit persons to whom the Software is
86
+ furnished to do so, subject to the following conditions:
87
+
88
+ The above copyright notice and this permission notice shall be included in all
89
+ copies or substantial portions of the Software.
90
+
91
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
92
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
93
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
94
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
95
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
96
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
97
+ SOFTWARE.
98
+
99
+
100
+ --------------------------- LICENSE FOR pix2pix --------------------------------
101
+ BSD License
102
+
103
+ For pix2pix software
104
+ Copyright (c) 2016, Phillip Isola and Jun-Yan Zhu
105
+ All rights reserved.
106
+
107
+ Redistribution and use in source and binary forms, with or without
108
+ modification, are permitted provided that the following conditions are met:
109
+
110
+ * Redistributions of source code must retain the above copyright notice, this
111
+ list of conditions and the following disclaimer.
112
+
113
+ * Redistributions in binary form must reproduce the above copyright notice,
114
+ this list of conditions and the following disclaimer in the documentation
115
+ and/or other materials provided with the distribution.
116
+
117
+ ----------------------------- LICENSE FOR DCGAN --------------------------------
118
+ BSD License
119
+
120
+ For dcgan.torch software
121
+
122
+ Copyright (c) 2015, Facebook, Inc. All rights reserved.
123
+
124
+ Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
125
+
126
+ Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
127
+
128
+ Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
129
+
130
+ Neither the name Facebook nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
131
+
132
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
133
+
134
+ --------------------------- LICENSE FOR StyleGAN2 ------------------------------
135
+ --------------------------- Inherited from stylegan2-pytorch -------------------
136
+ Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
137
+
138
+
139
+ Nvidia Source Code License-NC
140
+
141
+ =======================================================================
142
+
143
+ 1. Definitions
144
+
145
+ "Licensor" means any person or entity that distributes its Work.
146
+
147
+ "Software" means the original work of authorship made available under
148
+ this License.
149
+
150
+ "Work" means the Software and any additions to or derivative works of
151
+ the Software that are made available under this License.
152
+
153
+ "Nvidia Processors" means any central processing unit (CPU), graphics
154
+ processing unit (GPU), field-programmable gate array (FPGA),
155
+ application-specific integrated circuit (ASIC) or any combination
156
+ thereof designed, made, sold, or provided by Nvidia or its affiliates.
157
+
158
+ The terms "reproduce," "reproduction," "derivative works," and
159
+ "distribution" have the meaning as provided under U.S. copyright law;
160
+ provided, however, that for the purposes of this License, derivative
161
+ works shall not include works that remain separable from, or merely
162
+ link (or bind by name) to the interfaces of, the Work.
163
+
164
+ Works, including the Software, are "made available" under this License
165
+ by including in or with the Work either (a) a copyright notice
166
+ referencing the applicability of this License to the Work, or (b) a
167
+ copy of this License.
168
+
169
+ 2. License Grants
170
+
171
+ 2.1 Copyright Grant. Subject to the terms and conditions of this
172
+ License, each Licensor grants to you a perpetual, worldwide,
173
+ non-exclusive, royalty-free, copyright license to reproduce,
174
+ prepare derivative works of, publicly display, publicly perform,
175
+ sublicense and distribute its Work and any resulting derivative
176
+ works in any form.
177
+
178
+ 3. Limitations
179
+
180
+ 3.1 Redistribution. You may reproduce or distribute the Work only
181
+ if (a) you do so under this License, (b) you include a complete
182
+ copy of this License with your distribution, and (c) you retain
183
+ without modification any copyright, patent, trademark, or
184
+ attribution notices that are present in the Work.
185
+
186
+ 3.2 Derivative Works. You may specify that additional or different
187
+ terms apply to the use, reproduction, and distribution of your
188
+ derivative works of the Work ("Your Terms") only if (a) Your Terms
189
+ provide that the use limitation in Section 3.3 applies to your
190
+ derivative works, and (b) you identify the specific derivative
191
+ works that are subject to Your Terms. Notwithstanding Your Terms,
192
+ this License (including the redistribution requirements in Section
193
+ 3.1) will continue to apply to the Work itself.
194
+
195
+ 3.3 Use Limitation. The Work and any derivative works thereof only
196
+ may be used or intended for use non-commercially. The Work or
197
+ derivative works thereof may be used or intended for use by Nvidia
198
+ or its affiliates commercially or non-commercially. As used herein,
199
+ "non-commercially" means for research or evaluation purposes only.
200
+
201
+ 3.4 Patent Claims. If you bring or threaten to bring a patent claim
202
+ against any Licensor (including any claim, cross-claim or
203
+ counterclaim in a lawsuit) to enforce any patents that you allege
204
+ are infringed by any Work, then your rights under this License from
205
+ such Licensor (including the grants in Sections 2.1 and 2.2) will
206
+ terminate immediately.
207
+
208
+ 3.5 Trademarks. This License does not grant any rights to use any
209
+ Licensor's or its affiliates' names, logos, or trademarks, except
210
+ as necessary to reproduce the notices described in this License.
211
+
212
+ 3.6 Termination. If you violate any term of this License, then your
213
+ rights under this License (including the grants in Sections 2.1 and
214
+ 2.2) will terminate immediately.
215
+
216
+ 4. Disclaimer of Warranty.
217
+
218
+ THE WORK IS PROVIDED "AS IS" WITHOUT WARRANTIES OR CONDITIONS OF ANY
219
+ KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OR CONDITIONS OF
220
+ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR
221
+ NON-INFRINGEMENT. YOU BEAR THE RISK OF UNDERTAKING ANY ACTIVITIES UNDER
222
+ THIS LICENSE.
223
+
224
+ 5. Limitation of Liability.
225
+
226
+ EXCEPT AS PROHIBITED BY APPLICABLE LAW, IN NO EVENT AND UNDER NO LEGAL
227
+ THEORY, WHETHER IN TORT (INCLUDING NEGLIGENCE), CONTRACT, OR OTHERWISE
228
+ SHALL ANY LICENSOR BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY DIRECT,
229
+ INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF
230
+ OR RELATED TO THIS LICENSE, THE USE OR INABILITY TO USE THE WORK
231
+ (INCLUDING BUT NOT LIMITED TO LOSS OF GOODWILL, BUSINESS INTERRUPTION,
232
+ LOST PROFITS OR DATA, COMPUTER FAILURE OR MALFUNCTION, OR ANY OTHER
233
+ COMMERCIAL DAMAGES OR LOSSES), EVEN IF THE LICENSOR HAS BEEN ADVISED OF
234
+ THE POSSIBILITY OF SUCH DAMAGES.
235
+
236
+ =======================================================================
ModelLoader.py CHANGED
@@ -1,5 +1,6 @@
1
  from models import create_model
2
  from util.get_transform import get_transform
 
3
  from PIL import Image
4
  import os
5
 
@@ -14,41 +15,43 @@ class Options(object):
14
  setattr(self, key, kwargs[key])
15
 
16
  class ModelLoader:
17
- def __init__(self) -> None:
18
  self.opt = Options({
19
  'isGradio': True, # Custom
20
- 'name': 'original',
21
- 'checkpoints_dir': ckp_path,
22
- 'gpu_ids': [],
23
- 'init_gain': 0.02,
24
- 'init_type': 'xavier',
25
- 'input_nc': 3,
26
  'output_nc': 3,
27
  'isTrain': False,
28
  'model': 'cwr',
29
  'nce_idt': False,
30
  'nce_layers': '0',
31
- 'ndf': 64,
32
  'netD': 'basic',
33
  'netG': 'resnet_9blocks',
34
  'netF': 'mlp_sample',
35
  'netF_nc': 256,
36
- 'ngf': 64,
37
- 'no_antialias_up': None,
38
- 'no_antialias': None,
39
  'no_dropout': True,
40
  'normD': 'instance',
41
  'normG': 'instance',
42
- 'preprocess': 'scale_width',
43
- 'num_threads': 0, # test code only supports num_threads = 1
 
44
  'batch_size': 1, # test code only supports batch_size = 1
45
- 'serial_batches': True, # disable data shuffling; comment this line if results on randomly chosen images are needed.
46
  'no_flip': True, # no flip; comment this line if results on flipped images are needed.
47
  'display_id': -1, # no visdom display; the test code saves the results to a HTML file.
48
  'direction': 'AtoB', # inference
49
  'flip_equivariance': False,
50
- 'load_size': 1680,
51
- 'crop_size': 512,
 
52
  })
53
  self.transform = get_transform(self.opt, grayscale=False)
54
  self.model = None
@@ -62,9 +65,14 @@ class ModelLoader:
62
  # Loading
63
  print('Loading the image %s' % src)
64
  source = Image.open(src).convert('RGB')
65
- img = self.transform(source)
66
  print(img.shape)
67
  # Inference
68
- self.model.set_input({ 'A': img, 'B': img, 'A_paths': src })
 
 
 
69
  self.model.forward()
70
- print(self.model)
 
 
 
1
  from models import create_model
2
  from util.get_transform import get_transform
3
+ from util.util import tensor2im
4
  from PIL import Image
5
  import os
6
 
 
15
  setattr(self, key, kwargs[key])
16
 
17
  class ModelLoader:
18
+ def __init__(self, gpu_ids='', max_img_wh=512) -> None:
19
  self.opt = Options({
20
  'isGradio': True, # Custom
21
+ 'name': 'original', # Checkpoints name
22
+ 'checkpoints_dir': ckp_path, # Checkpoint folder
23
+ 'gpu_ids': gpu_ids.split(',') if gpu_ids else [],
24
+ 'init_gain': 0.02, # Scaling Factor
25
+ 'init_type': 'xavier', # list: 'normal', 'xavier', 'kaiming', 'orthogonal'
26
+ 'input_nc': 3, # 3 -> RGB, 1 -> Grayscale
27
  'output_nc': 3,
28
  'isTrain': False,
29
  'model': 'cwr',
30
  'nce_idt': False,
31
  'nce_layers': '0',
32
+ 'ndf': 64, # Nb of discrim filters in the first conv layer
33
  'netD': 'basic',
34
  'netG': 'resnet_9blocks',
35
  'netF': 'mlp_sample',
36
  'netF_nc': 256,
37
+ 'ngf': 64, # Nb of gen filters in the last conv layer
38
+ 'no_antialias_up': False,
39
+ 'no_antialias': False,
40
  'no_dropout': True,
41
  'normD': 'instance',
42
  'normG': 'instance',
43
+ 'preprocess': 'yarflam_auto', # see more: util.get_transform
44
+ 'dataroot': 'placeholder',
45
+ 'num_threads': 1, # test code only supports num_threads = 1
46
  'batch_size': 1, # test code only supports batch_size = 1
47
+ 'serial_batches': False, # disable data shuffling; comment this line if results on randomly chosen images are needed.
48
  'no_flip': True, # no flip; comment this line if results on flipped images are needed.
49
  'display_id': -1, # no visdom display; the test code saves the results to a HTML file.
50
  'direction': 'AtoB', # inference
51
  'flip_equivariance': False,
52
+ 'load_size': 1680, # not used
53
+ 'crop_size': 512, # not used
54
+ 'yarflam_img_wh': max_img_wh, # max width|height + auto scale down
55
  })
56
  self.transform = get_transform(self.opt, grayscale=False)
57
  self.model = None
 
65
  # Loading
66
  print('Loading the image %s' % src)
67
  source = Image.open(src).convert('RGB')
68
+ img = self.transform(source).unsqueeze(0)
69
  print(img.shape)
70
  # Inference
71
+ self.model.set_input({
72
+ 'A': img, 'A_paths': src,
73
+ 'B': img, 'B_paths': src
74
+ })
75
  self.model.forward()
76
+ out_data = list(self.model.get_current_visuals().items())[1][1]
77
+ out_img = Image.fromarray(tensor2im(out_data))
78
+ return out_img
README.md CHANGED
@@ -10,4 +10,18 @@ pinned: false
10
  short_description: Contrastive UnderWater Restoration
11
  ---
12
 
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  short_description: Contrastive UnderWater Restoration
11
  ---
12
 
13
+ # UnderWater
14
+
15
+ Improve underwater photos.
16
+
17
+ Contrastive UnderWater Restoration (CWR) - Gradio integration.
18
+
19
+ Source: https://github.com/JunlinHan/CWR
20
+
21
+ ## Author
22
+
23
+ - Yarflam - Gradio integration
24
+
25
+ ## License
26
+
27
+ MIT License - [see more](LICENSE)
app.py CHANGED
@@ -1,11 +1,24 @@
1
  import gradio as gr
 
 
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
 
 
 
 
 
 
5
 
6
  demo = gr.Interface(
7
- fn=greet,
8
- inputs="text",
9
- outputs="text"
 
 
 
 
 
10
  )
11
  demo.launch()
 
1
  import gradio as gr
2
+ from ModelLoader import ModelLoader
3
+ import os
4
 
5
+ max_img_wh = 1024 # Set the maximum image size in pixels
6
+
7
+ def inference(image, use_gpu):
8
+ gpu_ids = '0' if use_gpu else ''
9
+ model = ModelLoader(gpu_ids=gpu_ids, max_img_wh=max_img_wh)
10
+ model.load()
11
+ output_img = model.inference(src=image)
12
+ return output_img
13
 
14
  demo = gr.Interface(
15
+ fn=inference,
16
+ inputs=[
17
+ gr.inputs.Image(type="pil", label="Input Image"),
18
+ gr.inputs.Checkbox(label="Use GPU", value=True) # Precheck the GPU checkbox
19
+ ],
20
+ outputs=gr.outputs.Image(type="pil", label="Output Image"),
21
+ title="Model Demo",
22
+ description="Upload an image to see the model output."
23
  )
24
  demo.launch()
examples/test.jpg ADDED
test.py CHANGED
@@ -2,10 +2,12 @@ from ModelLoader import ModelLoader
2
  import os
3
 
4
  def main():
5
- model = ModelLoader()
6
  model.load()
7
  # Test
8
  sample = os.path.join(os.path.dirname(__file__), 'examples', 'rawimg.png')
9
- model.inference(src=sample)
 
 
10
 
11
  main()
 
2
  import os
3
 
4
  def main():
5
+ model = ModelLoader(gpu_ids='', max_img_wh=512)
6
  model.load()
7
  # Test
8
  sample = os.path.join(os.path.dirname(__file__), 'examples', 'rawimg.png')
9
+ # sample = os.path.join(os.path.dirname(__file__), 'examples', 'test.jpg')
10
+ img = model.inference(src=sample)
11
+ img.show() # PIL Image
12
 
13
  main()
util/get_transform.py CHANGED
@@ -18,6 +18,9 @@ def get_transform(opt, params=None, grayscale=False, method=Image.BICUBIC, conve
18
  elif 'scale_shortside' in opt.preprocess:
19
  transform_list.append(transforms.Lambda(lambda img: __scale_shortside(img, opt.load_size, opt.crop_size, method)))
20
 
 
 
 
21
  if 'zoom' in opt.preprocess:
22
  if params is None:
23
  transform_list.append(transforms.Lambda(lambda img: __random_zoom(img, opt.load_size, opt.crop_size, method)))
@@ -110,6 +113,19 @@ def __scale_width(img, target_width, crop_width, method=Image.BICUBIC):
110
  h = int(max(target_width * oh / ow, crop_width))
111
  return img.resize((w, h), method)
112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113
 
114
  def __crop(img, pos, size):
115
  ow, oh = img.size
 
18
  elif 'scale_shortside' in opt.preprocess:
19
  transform_list.append(transforms.Lambda(lambda img: __scale_shortside(img, opt.load_size, opt.crop_size, method)))
20
 
21
+ if opt.preprocess == 'yarflam_auto':
22
+ transform_list.append(transforms.Lambda(lambda img: __scale_yarflam(img, opt.yarflam_img_wh, method)))
23
+
24
  if 'zoom' in opt.preprocess:
25
  if params is None:
26
  transform_list.append(transforms.Lambda(lambda img: __random_zoom(img, opt.load_size, opt.crop_size, method)))
 
113
  h = int(max(target_width * oh / ow, crop_width))
114
  return img.resize((w, h), method)
115
 
116
+ def __scale_yarflam(img, target_wh, method=Image.BICUBIC):
117
+ ow, oh = img.size
118
+ if max(ow, oh) <= target_wh:
119
+ return img
120
+ if ow > target_wh and oh > target_wh:
121
+ ratio = target_wh / max(ow, oh)
122
+ w, h = int(ow * ratio), int(oh * ratio)
123
+ elif ow > target_wh:
124
+ w, h = target_wh, int((oh / ow) * target_wh)
125
+ else:
126
+ w, h = int((ow / oh) * target_wh), target_wh
127
+ return img.resize((w, h), method)
128
+
129
 
130
  def __crop(img, pos, size):
131
  ow, oh = img.size