Spaces:
Build error
Build error
File size: 1,368 Bytes
803efd8 3078983 803efd8 996f292 803efd8 17bb76d 803efd8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
import gradio as gr
import hopsworks
import joblib
import pandas as pd
import numpy as np
import json
import time
from datetime import timedelta, datetime
from functions import *
project = hopsworks.login()
fs = project.get_feature_store()
def air_quality(city):
weather_df = pd.DataFrame()
for i in range(8):
weather_data = get_weather_df([get_weather_data(city,(datetime.now() + timedelta(days=i)).strftime("%Y-%m-%d"))])
weather_df = weather_df.append(weather_data)
#weather_df = weather_df.drop(columns=["feelslikemin", "feelslikemax", "precipprob", "snowdepth", "uvindex", "date","city","conditions"]).fillna(0)
mr = project.get_model_registry()
model = mr.get_model("gradient_boost_model", version=2)
model_dir = model.download()
model = joblib.load(model_dir + "/model.pkl")
preds = model.predict(weather_df)
predictions = ''
for k in range(7):
predictions += "Predicted AQI on " + (datetime.now() + timedelta(days=k)).strftime('%Y-%m-%d') + ": " + str(int(preds[k]))+"\n"
print(predictions)
return predictions
demo = gr.Interface(fn=air_quality, title="Air quality predictor",
description="Input a value to get next weeks AQI prediction for Malmo", inputs="text", outputs="text")
if __name__ == "__main__":
demo.launch()
|