Spaces:
Build error
Build error
import gradio as gr | |
import hopsworks | |
import joblib | |
import pandas as pd | |
import numpy as np | |
import json | |
import time | |
from datetime import timedelta, datetime | |
from functions import * | |
project = hopsworks.login() | |
def air_quality(city): | |
start_date = datetime.now() - timedelta(days=1) | |
start_time = int(start_date.timestamp()) * 1000 | |
X = pd.read_csv('x.csv') | |
#X = X.drop(columns=["date"]).fillna(0) | |
X = X.drop(X.columns[0],axis=1) | |
mr = project.get_model_registry() | |
model = mr.get_model("gradient_boost_paris_model", version=1) | |
model_dir = model.download() | |
model = joblib.load(model_dir + "/model.pkl") | |
preds = model.predict(X) | |
#print(model.predict(X)[:7]) | |
predictions = '' | |
for k in range(7): | |
predictions += "Predicted AQI on " + (datetime.now() + timedelta(days=k)).strftime('%Y-%m-%d') + ": " + str(int(preds[k]))+"\n" | |
print(predictions) | |
return predictions | |
demo = gr.Interface(fn=air_quality, title="Air quality predictor", | |
description="Input a value to get next weeks AQI prediction for Paris", inputs="text", outputs="text") | |
if __name__ == "__main__": | |
demo.launch() | |