Spaces:
Build error
Build error
Create function.py
Browse files- function.py +180 -0
function.py
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import os
|
3 |
+
import pandas as pd
|
4 |
+
import datetime
|
5 |
+
import numpy as np
|
6 |
+
from sklearn.preprocessing import OrdinalEncoder
|
7 |
+
from dotenv import load_dotenv
|
8 |
+
load_dotenv()
|
9 |
+
|
10 |
+
|
11 |
+
## TODO: write function to display the color coding of the categoies both in the df and as a guide.
|
12 |
+
#sg like:
|
13 |
+
def color_aq(val):
|
14 |
+
color = 'green' if val else 'red'
|
15 |
+
return f'background-color: {color}'
|
16 |
+
# but better
|
17 |
+
|
18 |
+
|
19 |
+
def get_air_quality_data(station_name):
|
20 |
+
AIR_QUALITY_API_KEY = os.getenv('AIR_QUALITY_API_KEY')
|
21 |
+
request_value = f'https://api.waqi.info/feed/{station_name}/?token={AIR_QUALITY_API_KEY}'
|
22 |
+
answer = requests.get(request_value).json()["data"]
|
23 |
+
forecast = answer['forecast']['daily']
|
24 |
+
return [
|
25 |
+
answer["time"]["s"][:10], # Date
|
26 |
+
int(forecast['pm25'][0]['avg']), # avg predicted pm25
|
27 |
+
int(forecast['pm10'][0]['avg']), # avg predicted pm10
|
28 |
+
max(int(forecast['pm25'][0]['avg']), int(forecast['pm10'][0]['avg'])) # avg predicted aqi
|
29 |
+
]
|
30 |
+
|
31 |
+
def get_air_quality_df(data):
|
32 |
+
col_names = [
|
33 |
+
'date',
|
34 |
+
'pm25',
|
35 |
+
'pm10',
|
36 |
+
'aqi'
|
37 |
+
]
|
38 |
+
|
39 |
+
new_data = pd.DataFrame(
|
40 |
+
data
|
41 |
+
).T
|
42 |
+
new_data.columns = col_names
|
43 |
+
new_data['pm25'] = pd.to_numeric(new_data['pm25'])
|
44 |
+
new_data['pm10'] = pd.to_numeric(new_data['pm10'])
|
45 |
+
new_data['aqi'] = pd.to_numeric(new_data['aqi'])
|
46 |
+
|
47 |
+
return new_data
|
48 |
+
|
49 |
+
|
50 |
+
def get_weather_data_daily(city):
|
51 |
+
WEATHER_API_KEY = os.getenv('WEATHER_API_KEY')
|
52 |
+
answer = requests.get(f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/{city}/today?unitGroup=metric&include=days&key={WEATHER_API_KEY}&contentType=json').json()
|
53 |
+
data = answer['days'][0]
|
54 |
+
return [
|
55 |
+
answer['address'].lower(),
|
56 |
+
data['datetime'],
|
57 |
+
data['tempmax'],
|
58 |
+
data['tempmin'],
|
59 |
+
data['temp'],
|
60 |
+
data['feelslikemax'],
|
61 |
+
data['feelslikemin'],
|
62 |
+
data['feelslike'],
|
63 |
+
data['dew'],
|
64 |
+
data['humidity'],
|
65 |
+
data['precip'],
|
66 |
+
data['precipprob'],
|
67 |
+
data['precipcover'],
|
68 |
+
data['snow'],
|
69 |
+
data['snowdepth'],
|
70 |
+
data['windgust'],
|
71 |
+
data['windspeed'],
|
72 |
+
data['winddir'],
|
73 |
+
data['pressure'],
|
74 |
+
data['cloudcover'],
|
75 |
+
data['visibility'],
|
76 |
+
data['solarradiation'],
|
77 |
+
data['solarenergy'],
|
78 |
+
data['uvindex'],
|
79 |
+
data['conditions']
|
80 |
+
]
|
81 |
+
|
82 |
+
def get_weather_data_weekly(city: str, start_date: datetime) -> pd.DataFrame:
|
83 |
+
WEATHER_API_KEY = os.getenv('WEATHER_API_KEY')
|
84 |
+
end_date = f"{start_date + datetime.timedelta(days=6):%Y-%m-%d}"
|
85 |
+
answer = requests.get(f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/{city}/{start_date}/{end_date}?unitGroup=metric&include=days&key={WEATHER_API_KEY}&contentType=json').json()
|
86 |
+
weather_data = answer['days']
|
87 |
+
final_df = pd.DataFrame()
|
88 |
+
|
89 |
+
for i in range(7):
|
90 |
+
data = weather_data[i]
|
91 |
+
list_of_data = [
|
92 |
+
answer['address'].lower(),
|
93 |
+
data['datetime'],
|
94 |
+
data['tempmax'],
|
95 |
+
data['tempmin'],
|
96 |
+
data['temp'],
|
97 |
+
data['feelslikemax'],
|
98 |
+
data['feelslikemin'],
|
99 |
+
data['feelslike'],
|
100 |
+
data['dew'],
|
101 |
+
data['humidity'],
|
102 |
+
data['precip'],
|
103 |
+
data['precipprob'],
|
104 |
+
data['precipcover'],
|
105 |
+
data['snow'],
|
106 |
+
data['snowdepth'],
|
107 |
+
data['windgust'],
|
108 |
+
data['windspeed'],
|
109 |
+
data['winddir'],
|
110 |
+
data['pressure'],
|
111 |
+
data['cloudcover'],
|
112 |
+
data['visibility'],
|
113 |
+
data['solarradiation'],
|
114 |
+
data['solarenergy'],
|
115 |
+
data['uvindex'],
|
116 |
+
data['conditions']
|
117 |
+
]
|
118 |
+
weather_df = get_weather_df(list_of_data)
|
119 |
+
final_df = pd.concat([final_df, weather_df])
|
120 |
+
return final_df
|
121 |
+
|
122 |
+
def get_weather_df(data):
|
123 |
+
col_names = [
|
124 |
+
'name',
|
125 |
+
'date',
|
126 |
+
'tempmax',
|
127 |
+
'tempmin',
|
128 |
+
'temp',
|
129 |
+
'feelslikemax',
|
130 |
+
'feelslikemin',
|
131 |
+
'feelslike',
|
132 |
+
'dew',
|
133 |
+
'humidity',
|
134 |
+
'precip',
|
135 |
+
'precipprob',
|
136 |
+
'precipcover',
|
137 |
+
'snow',
|
138 |
+
'snowdepth',
|
139 |
+
'windgust',
|
140 |
+
'windspeed',
|
141 |
+
'winddir',
|
142 |
+
'pressure',
|
143 |
+
'cloudcover',
|
144 |
+
'visibility',
|
145 |
+
'solarradiation',
|
146 |
+
'solarenergy',
|
147 |
+
'uvindex',
|
148 |
+
'conditions'
|
149 |
+
]
|
150 |
+
|
151 |
+
new_data = pd.DataFrame(
|
152 |
+
data
|
153 |
+
).T
|
154 |
+
new_data.columns = col_names
|
155 |
+
for col in col_names:
|
156 |
+
if col not in ['name', 'date', 'conditions']:
|
157 |
+
new_data[col] = pd.to_numeric(new_data[col])
|
158 |
+
|
159 |
+
return new_data
|
160 |
+
|
161 |
+
def data_encoder(X):
|
162 |
+
X.drop(columns=['date', 'name'], inplace=True)
|
163 |
+
X['conditions'] = OrdinalEncoder().fit_transform(X[['conditions']])
|
164 |
+
return X
|
165 |
+
|
166 |
+
def get_aplevel(temps:np.ndarray, table:list):
|
167 |
+
boundary_list = np.array([0, 50, 100, 150, 200, 300]) # assert temps.shape == [x, 1]
|
168 |
+
redf = np.logical_not(temps<=boundary_list) # temps.shape[0] x boundary_list.shape[0] ndarray
|
169 |
+
hift = np.concatenate((np.roll(redf, -1)[:, :-1], np.full((temps.shape[0], 1), False)), axis = 1)
|
170 |
+
cat = np.nonzero(np.not_equal(redf,hift))
|
171 |
+
|
172 |
+
level = [table[el] for el in cat[1]]
|
173 |
+
return level
|
174 |
+
|
175 |
+
def get_color(level:list):
|
176 |
+
air_pollution_level = ['Good', 'Moderate', 'Unhealthy for sensitive Groups','Unhealthy' ,'Very Unhealthy', 'Hazardous']
|
177 |
+
color_list = ["Green", "Yellow", "DarkOrange", "Red", "Purple", "DarkRed"]
|
178 |
+
ind = [air_pollution_level.index(lel) for lel in level]
|
179 |
+
text = [f"color:{color_list[idex]};" for idex in ind]
|
180 |
+
return text
|