Yasaman commited on
Commit
1bd66c6
·
1 Parent(s): f60abab

Update functions.py

Browse files
Files changed (1) hide show
  1. functions.py +46 -95
functions.py CHANGED
@@ -1,89 +1,54 @@
 
1
  import requests
2
  import os
3
  import joblib
4
  import pandas as pd
5
- import datetime
6
- import numpy as np
7
- import time
8
- from sklearn.preprocessing import OrdinalEncoder
9
- from dotenv import load_dotenv
10
- load_dotenv(override=True)
11
-
12
-
13
- def decode_features(df, feature_view):
14
- """Decodes features in the input DataFrame using corresponding Hopsworks Feature Store transformation functions"""
15
- df_res = df.copy()
16
-
17
- import inspect
18
-
19
-
20
- td_transformation_functions = feature_view._batch_scoring_server._transformation_functions
21
-
22
- res = {}
23
- for feature_name in td_transformation_functions:
24
- if feature_name in df_res.columns:
25
- td_transformation_function = td_transformation_functions[feature_name]
26
- sig, foobar_locals = inspect.signature(td_transformation_function.transformation_fn), locals()
27
- param_dict = dict([(param.name, param.default) for param in sig.parameters.values() if param.default != inspect._empty])
28
- if td_transformation_function.name == "min_max_scaler":
29
- df_res[feature_name] = df_res[feature_name].map(
30
- lambda x: x * (param_dict["max_value"] - param_dict["min_value"]) + param_dict["min_value"])
31
-
32
- elif td_transformation_function.name == "standard_scaler":
33
- df_res[feature_name] = df_res[feature_name].map(
34
- lambda x: x * param_dict['std_dev'] + param_dict["mean"])
35
- elif td_transformation_function.name == "label_encoder":
36
- dictionary = param_dict['value_to_index']
37
- dictionary_ = {v: k for k, v in dictionary.items()}
38
- df_res[feature_name] = df_res[feature_name].map(
39
- lambda x: dictionary_[x])
40
- return df_res
41
 
 
42
 
43
- def get_model(project, model_name, evaluation_metric, sort_metrics_by):
44
- """Retrieve desired model or download it from the Hopsworks Model Registry.
45
- In second case, it will be physically downloaded to this directory"""
46
- TARGET_FILE = "model.pkl"
47
- list_of_files = [os.path.join(dirpath,filename) for dirpath, _, filenames \
48
- in os.walk('.') for filename in filenames if filename == TARGET_FILE]
49
-
50
- if list_of_files:
51
- model_path = list_of_files[0]
52
- model = joblib.load(model_path)
53
- else:
54
- if not os.path.exists(TARGET_FILE):
55
- mr = project.get_model_registry()
56
- # get best model based on custom metrics
57
- model = mr.get_best_model(model_name,
58
- evaluation_metric,
59
- sort_metrics_by)
60
- model_dir = model.download()
61
- model = joblib.load(model_dir + "/model.pkl")
62
-
63
- return model
64
-
65
-
66
- def get_weather_data_weekly(city: str, start_date: datetime) -> pd.DataFrame:
67
- #WEATHER_API_KEY = os.getenv('WEATHER_API_KEY')
68
- ##end_date = f"{start_date + datetime.timedelta(days=6):%Y-%m-%d}"
69
- next7days_weather=pd.read_csv('https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/Beijing/next7days?unitGroup=metric&include=days&key=5WNL2M94KKQ4R4F32LFV8DPE4&contentType=csv')
70
- #answer = requests.get(f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/{city}/{start_date}/{end_date}?unitGroup=metric&include=days&key={WEATHER_API_KEY}&contentType=json').json()
71
-
72
-
73
- df_weather = pd.DataFrame(next7days_weather)
74
- df_weather.rename(columns = {"datetime": "date"},
75
- inplace = True)
76
- df_weather.rename(columns = {"name": "city"},
77
- inplace = True)
78
- df_weather.rename(columns = {"sealevelpressure": "pressure"},
79
- inplace = True)
80
- df_weather = df_weather.drop(labels=['city','dew','precip','tempmax','pressure','tempmin','temp','feelslikemax','feelslikemin','feelslike','precipprob','precipcover','snow','snowdepth','cloudcover','severerisk','moonphase','preciptype','sunrise','sunset','conditions','description','icon','stations'], axis=1) #删除不用的列
81
 
82
- return df_weather
83
 
84
  def get_weather_df(data):
85
  col_names = [
86
- 'name',
87
  'date',
88
  'tempmax',
89
  'tempmin',
@@ -111,28 +76,14 @@ def get_weather_df(data):
111
  ]
112
 
113
  new_data = pd.DataFrame(
114
- data
115
- ).T
116
- new_data.columns = col_names
117
- for col in col_names:
118
- if col not in ['name', 'date', 'conditions']:
119
- new_data[col] = pd.to_numeric(new_data[col])
120
 
121
  return new_data
122
 
123
-
124
-
125
- def get_aplevel(temps:np.ndarray) -> list:
126
- boundary_list = np.array([0, 50, 100, 150, 200, 300]) # assert temps.shape == [x, 1]
127
- redf = np.logical_not(temps<=boundary_list) # temps.shape[0] x boundary_list.shape[0] ndarray
128
- hift = np.concatenate((np.roll(redf, -1)[:, :-1], np.full((temps.shape[0], 1), False)), axis = 1)
129
- cat = np.nonzero(np.not_equal(redf,hift))
130
-
131
- air_pollution_level = ['Good', 'Moderate', 'Unhealthy for sensitive Groups','Unhealthy' ,'Very Unhealthy', 'Hazardous']
132
- level = [air_pollution_level[el] for el in cat[1]]
133
- return level
134
-
135
  def timestamp_2_time(x):
136
- dt_obj = datetime.datetime.strptime(str(x), '%Y-%m-%d')
137
  dt_obj = dt_obj.timestamp() * 1000
138
  return int(dt_obj)
 
1
+ from datetime import datetime
2
  import requests
3
  import os
4
  import joblib
5
  import pandas as pd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
 
7
+ import json
8
 
9
+ from dotenv import load_dotenv
10
+ load_dotenv()
11
+
12
+ def get_weather_json(date, WEATHER_API_KEY):
13
+ return requests.get(f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/london/{date}?unitGroup=metric&include=days&key={WEATHER_API_KEY}&contentType=json').json()
14
+
15
+ def get_weather_data(date):
16
+ WEATHER_API_KEY = os.getenv('WEATHER_API_KEY')
17
+ json = get_weather_json(date, WEATHER_API_KEY)
18
+ data = json['days'][0]
19
+
20
+ return [
21
+ json['address'].capitalize(),
22
+ data['datetime'],
23
+ data['tempmax'],
24
+ data['tempmin'],
25
+ data['temp'],
26
+ data['feelslikemax'],
27
+ data['feelslikemin'],
28
+ data['feelslike'],
29
+ data['dew'],
30
+ data['humidity'],
31
+ data['precip'],
32
+ data['precipprob'],
33
+ data['precipcover'],
34
+ data['snow'],
35
+ data['snowdepth'],
36
+ data['windgust'],
37
+ data['windspeed'],
38
+ data['winddir'],
39
+ data['pressure'],
40
+ data['cloudcover'],
41
+ data['visibility'],
42
+ data['solarradiation'],
43
+ data['solarenergy'],
44
+ data['uvindex'],
45
+ data['conditions']
46
+ ]
47
 
 
48
 
49
  def get_weather_df(data):
50
  col_names = [
51
+ 'city',
52
  'date',
53
  'tempmax',
54
  'tempmin',
 
76
  ]
77
 
78
  new_data = pd.DataFrame(
79
+ data,
80
+ columns=col_names
81
+ )
82
+ new_data.date = new_data.date.apply(timestamp_2_time)
 
 
83
 
84
  return new_data
85
 
 
 
 
 
 
 
 
 
 
 
 
 
86
  def timestamp_2_time(x):
87
+ dt_obj = datetime.strptime(str(x), '%Y-%m-%d')
88
  dt_obj = dt_obj.timestamp() * 1000
89
  return int(dt_obj)