Yasaman commited on
Commit
d388830
1 Parent(s): 7a3686f

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -99
app.py DELETED
@@ -1,99 +0,0 @@
1
- import gradio as gr
2
- import hopsworks
3
- import joblib
4
- import pandas as pd
5
- import numpy as np
6
- import json
7
- import time
8
- from datetime import timedelta, datetime
9
-
10
-
11
- from functions import *
12
-
13
-
14
- project = hopsworks.login()
15
- fs = project.get_feature_store()
16
-
17
- feature_view = fs.get_feature_view(
18
- name = 'air_quality_fv',
19
- version = 3
20
- )
21
-
22
-
23
- def air_quality(city):
24
- weather_df = pd.DataFrame()
25
- for i in range(8):
26
- weather_data = get_weather_df([get_weather_data((datetime.now() + timedelta(days=i)).strftime("%Y-%m-%d"))])
27
- weather_df = weather_df.append(weather_data)
28
-
29
- weather_df = weather_df.drop(columns=["date"]).fillna(0)
30
-
31
- mr = project.get_model_registry()
32
- model = mr.get_model("gradient_boost_model", version=1)
33
- model_dir = model.download()
34
- model = joblib.load(model_dir + "/model.pkl")
35
-
36
- preds = model.predict(weather_df)
37
-
38
- predictions = ''
39
- for k in range(7):
40
- predictions += "Predicted AQI on " + (datetime.now() + timedelta(days=k)).strftime('%Y-%m-%d') + ": " + str(int(preds[k]))+"\n"
41
-
42
- print(predictions)
43
- return predictions
44
-
45
-
46
- demo = gr.Interface(fn=air_quality, title="Air quality predictor",
47
- description="Next week's AQI prediction for Paris", inputs="text", outputs="text")
48
-
49
-
50
-
51
- if __name__ == "__main__":
52
- demo.launch()
53
- import gradio as gr
54
- import hopsworks
55
- import joblib
56
- import pandas as pd
57
- import numpy as np
58
- import json
59
- import time
60
- from datetime import timedelta, datetime
61
-
62
-
63
- from functions import *
64
-
65
-
66
- project = hopsworks.login()
67
- fs = project.get_feature_store()
68
-
69
-
70
- def air_quality(city):
71
- weather_df = pd.DataFrame()
72
- for i in range(8):
73
- weather_data = get_weather_df([get_weather_data((datetime.now() + timedelta(days=i)).strftime("%Y-%m-%d"))])
74
- weather_df = weather_df.append(weather_data)
75
-
76
- weather_df = weather_df.drop(columns=["precipprob", "uvindex", "date","city","conditions"]).fillna(0)
77
-
78
- mr = project.get_model_registry()
79
- model = mr.get_model("gradient_boost_model", version=1)
80
- model_dir = model.download()
81
- model = joblib.load(model_dir + "/model.pkl")
82
-
83
- preds = model.predict(weather_df)
84
-
85
- predictions = ''
86
- for k in range(7):
87
- predictions += "Predicted AQI on " + (datetime.now() + timedelta(days=k)).strftime('%Y-%m-%d') + ": " + str(int(preds[k]))+"\n"
88
-
89
- print(predictions)
90
- return predictions
91
-
92
-
93
- demo = gr.Interface(fn=air_quality, title="Air quality predictor",
94
- description="Next week's AQI prediction for Paris", inputs="text", outputs="text")
95
-
96
-
97
-
98
- if __name__ == "__main__":
99
- demo.launch()