import gradio as gr import hopsworks import joblib import pandas as pd import numpy as np import json import time from datetime import timedelta, datetime from functions import * project = hopsworks.login() fs = project.get_feature_store() def air_quality(city): air_quality_df = pd.DataFrame() weather_df = pd.DataFrame() for i in range(8): weather_data = get_weather_df([get_weather_data((datetime.now() + timedelta(days=i)).strftime("%Y-%m-%d"))]) weather_df = weather_df.append(weather_data) quality_data= get_air_quality_df([get_air_quality_data(city)]) air_quality_df=air_quality_df.append(quality_data) print(air_quality_df) print(weather_df) weather_df = weather_df.drop(columns=["feelslikemin", "feelslikemax","precipprob", "snow", "snowdepth", "uvindex", "date","city","conditions"]).fillna(0) mr = project.get_model_registry() model = mr.get_model("gradient_boost_paris_model", version=1) model_dir = model.download() model = joblib.load(model_dir + "/model.pkl") preds = model.predict(weather_df) predictions = '' for k in range(7): predictions += "Predicted AQI on " + (datetime.now() + timedelta(days=k)).strftime('%Y-%m-%d') + ": " + str(int(preds[k]))+"\n" print(predictions) return predictions demo = gr.Interface(fn=air_quality, title="Air quality predictor", description="Input a value to get next weeks AQI prediction for Malmo", inputs="text", outputs="text") if __name__ == "__main__": demo.launch()