import streamlit as st import hopsworks import joblib import pandas as pd import datetime from functions import get_weather_data_weekly, data_encoder, get_aplevel, get_color today = datetime.date.today() city = "Paris" weekly_data = get_weather_data_weekly(city, today) mr = project.get_model_registry() model = mr.get_model("gradient_boost_model", version=1) model_dir = model.download() model = joblib.load(model_dir + "/model.pkl") preds = model.predict(data_encoder(weekly_data)).astype(int) air_pollution_level = ['Good', 'Moderate', 'Unhealthy for sensitive Groups','Unhealthy' ,'Very Unhealthy', 'Hazardous'] poll_level = get_aplevel(preds.T.reshape(-1, 1), air_pollution_level) next_week_datetime = [today + datetime.timedelta(days=d) for d in range(7)] next_week_str = [f"{days.strftime('%A')}, {days.strftime('%Y-%m-%d')}" for days in next_week_datetime] df = pd.DataFrame(data=[preds, poll_level], index=["AQI", "Air pollution level"], columns=next_week_str) st.write("Here they are!") st.dataframe(df.style.apply(get_color, subset=(["Air pollution level"], slice(None)))) st.button("Re-run")