Yassmen commited on
Commit
c0f5938
·
verified ·
1 Parent(s): 306bbb1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -45,7 +45,7 @@ def prepare_sequences(notes, pitchnames, n_vocab , seq_length):
45
  n_patterns = len(network_input)
46
 
47
  # reshape the input into a format compatible with LSTM layers
48
- normalized_input = numpy.reshape(network_input, (n_patterns, sequence_length, 1))
49
  # normalize input
50
  normalized_input = normalized_input / float(n_vocab)
51
 
@@ -84,7 +84,7 @@ def create_network(network_input, n_vocab):
84
  def generate_notes(model, network_input, pitchnames, n_vocab , x):
85
  """ Generate notes from the neural network based on a sequence of notes """
86
  # pick a random sequence from the input as a starting point for the prediction
87
- start = numpy.random.randint(0, len(network_input)-1)
88
 
89
  int_to_note = dict((number, note) for number, note in enumerate(pitchnames))
90
 
@@ -93,12 +93,12 @@ def generate_notes(model, network_input, pitchnames, n_vocab , x):
93
 
94
  # generate x notes (x entered by user)
95
  for note_index in range(x):
96
- prediction_input = numpy.reshape(pattern, (1, len(pattern), 1))
97
  prediction_input = prediction_input / float(n_vocab)
98
 
99
  prediction = model.predict(prediction_input, verbose=0)
100
 
101
- index = numpy.argmax(prediction)
102
  result = int_to_note[index]
103
  prediction_output.append(result)
104
 
 
45
  n_patterns = len(network_input)
46
 
47
  # reshape the input into a format compatible with LSTM layers
48
+ normalized_input = np.reshape(network_input, (n_patterns, sequence_length, 1))
49
  # normalize input
50
  normalized_input = normalized_input / float(n_vocab)
51
 
 
84
  def generate_notes(model, network_input, pitchnames, n_vocab , x):
85
  """ Generate notes from the neural network based on a sequence of notes """
86
  # pick a random sequence from the input as a starting point for the prediction
87
+ start = np.random.randint(0, len(network_input)-1)
88
 
89
  int_to_note = dict((number, note) for number, note in enumerate(pitchnames))
90
 
 
93
 
94
  # generate x notes (x entered by user)
95
  for note_index in range(x):
96
+ prediction_input = np.reshape(pattern, (1, len(pattern), 1))
97
  prediction_input = prediction_input / float(n_vocab)
98
 
99
  prediction = model.predict(prediction_input, verbose=0)
100
 
101
+ index = np.argmax(prediction)
102
  result = int_to_note[index]
103
  prediction_output.append(result)
104