Upload 2 files
Browse files- app.py +136 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
|
3 |
+
from PIL import Image
|
4 |
+
import requests
|
5 |
+
from byaldi import RAGMultiModalModel
|
6 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
|
7 |
+
from PIL import Image
|
8 |
+
from io import BytesIO
|
9 |
+
import torch
|
10 |
+
import re
|
11 |
+
import base64
|
12 |
+
|
13 |
+
RAG = RAGMultiModalModel.from_pretrained("vidore/colpali", verbose=10)
|
14 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
15 |
+
"Qwen/Qwen2-VL-2B-Instruct",
|
16 |
+
torch_dtype=torch.float16,
|
17 |
+
device_map="auto",
|
18 |
+
)
|
19 |
+
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
|
20 |
+
|
21 |
+
def create_rag_index(image_path):
|
22 |
+
RAG.index(
|
23 |
+
input_path=image_path,
|
24 |
+
index_name="image_index",
|
25 |
+
store_collection_with_index=True,
|
26 |
+
overwrite=True,
|
27 |
+
)
|
28 |
+
|
29 |
+
def extract_relevant_text(qwen_output):
|
30 |
+
# Extract the main content from the Qwen2-VL output (assuming it's a list of strings)
|
31 |
+
qwen_text = qwen_output[0]
|
32 |
+
|
33 |
+
# Split the text by newlines and periods to handle various sentence structures
|
34 |
+
lines = qwen_text.split('\n')
|
35 |
+
|
36 |
+
# Initialize a list to hold relevant text lines
|
37 |
+
relevant_text = []
|
38 |
+
|
39 |
+
# Loop through each line to identify relevant text
|
40 |
+
for line in lines:
|
41 |
+
# Use a regex to match text that looks like it's extracted from the image
|
42 |
+
# We ignore any description or meta information
|
43 |
+
if re.match(r'[A-Za-z0-9]', line): # Matches lines that have words or numbers
|
44 |
+
relevant_text.append(line.strip())
|
45 |
+
|
46 |
+
# Join the relevant text into a single output (you can customize the format)
|
47 |
+
return "\n".join(relevant_text)
|
48 |
+
|
49 |
+
|
50 |
+
# put all in one function
|
51 |
+
def ocr_image(image_path,text_query):
|
52 |
+
if text_query:
|
53 |
+
create_rag_index(image_path)
|
54 |
+
results = RAG.search(text_query, k=1, return_base64_results=True)
|
55 |
+
|
56 |
+
image_data = base64.b64decode(results[0].base64)
|
57 |
+
image = Image.open(BytesIO(image_data))
|
58 |
+
else:
|
59 |
+
image = Image.open(image_path)
|
60 |
+
messages = [
|
61 |
+
{
|
62 |
+
"role": "user",
|
63 |
+
"content": [
|
64 |
+
{
|
65 |
+
"type": "image",
|
66 |
+
"image": image,
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"type": "text",
|
70 |
+
"text": "explain all text find in the image."
|
71 |
+
}
|
72 |
+
]
|
73 |
+
}
|
74 |
+
]
|
75 |
+
|
76 |
+
text_prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
77 |
+
|
78 |
+
inputs = processor(
|
79 |
+
text=[text_prompt],
|
80 |
+
images=[image],
|
81 |
+
padding=True,
|
82 |
+
return_tensors="pt"
|
83 |
+
)
|
84 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
85 |
+
|
86 |
+
inputs = inputs.to(device)
|
87 |
+
|
88 |
+
output_ids = model.generate(**inputs, max_new_tokens=1024)
|
89 |
+
|
90 |
+
generated_ids = [
|
91 |
+
output_ids[len(input_ids):]
|
92 |
+
for input_ids, output_ids in zip(inputs.input_ids, output_ids)
|
93 |
+
]
|
94 |
+
|
95 |
+
output_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
96 |
+
|
97 |
+
# Extract relevant text from the Qwen2-VL output
|
98 |
+
relevant_text = extract_relevant_text(output_text)
|
99 |
+
|
100 |
+
return relevant_text
|
101 |
+
|
102 |
+
|
103 |
+
def highlight_text(text, query):
|
104 |
+
highlighted_text = text
|
105 |
+
for word in query.split():
|
106 |
+
pattern = re.compile(re.escape(word), re.IGNORECASE)
|
107 |
+
highlighted_text = pattern.sub(lambda m: f'<span style="background-color: yellow;">{m.group()}</span>', highlighted_text)
|
108 |
+
return highlighted_text
|
109 |
+
|
110 |
+
def ocr_and_search(image, keyword):
|
111 |
+
extracted_text = ocr_image(image,keyword)
|
112 |
+
#print(extracted_text)
|
113 |
+
if keyword =='':
|
114 |
+
return extracted_text , 'Please Enter a Keyword'
|
115 |
+
|
116 |
+
else:
|
117 |
+
highlighted_text = highlight_text(extracted_text, keyword)
|
118 |
+
return extracted_text , highlighted_text
|
119 |
+
|
120 |
+
# Create Gradio Interface
|
121 |
+
interface = gr.Interface(
|
122 |
+
fn=ocr_and_search,
|
123 |
+
inputs=[
|
124 |
+
gr.Image(type="filepath", label="Upload Image"),
|
125 |
+
gr.Textbox(label="Enter Keyword")
|
126 |
+
],
|
127 |
+
outputs=[
|
128 |
+
gr.Textbox(label="Extracted Text"),
|
129 |
+
gr.HTML("Search Result"),
|
130 |
+
],
|
131 |
+
title="OCR and Document Search Web Application",
|
132 |
+
description="Upload an image to extract text in Hindi and English and search for keywords."
|
133 |
+
)
|
134 |
+
|
135 |
+
if __name__ == "__main__":
|
136 |
+
interface.launch(share=True)
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
git+https://github.com/huggingface/transformers
|
2 |
+
byaldi
|
3 |
+
qwen_vl_utils
|