import dash from dash import dcc, html, Input, Output import pandas as pd import plotly.express as px # Load the data def load_data(): file_path = 'digital_identity_data.xlsx' return pd.read_excel(file_path) data = load_data() # Initialize Dash app app = dash.Dash(__name__) app.title = "Digital Identity Dashboard" # Layout def generate_layout(): return html.Div([ html.H1("Digital Identity Dashboard", style={"textAlign": "center"}), html.Div([ html.Label("Select Countries:"), dcc.Checklist( id="country-filter", options=[{"label": country, "value": country} for country in data["Country"].unique()], value=data["Country"].unique().tolist(), inline=True ), html.Label("Select Genders:"), dcc.Checklist( id="gender-filter", options=[{"label": gender, "value": gender} for gender in data["Gender"].unique()], value=data["Gender"].unique().tolist(), inline=True ), html.Label("Select Account Status:"), dcc.Checklist( id="status-filter", options=[{"label": status, "value": status} for status in data["Account Status"].unique()], value=data["Account Status"].unique().tolist(), inline=True ), ], style={"marginBottom": "20px"}), html.Div(id="filtered-data-table"), html.Div([ dcc.Graph(id="logins-by-country"), dcc.Graph(id="session-duration-by-gender") ], style={"display": "flex", "flexWrap": "wrap"}), html.Div([ dcc.Graph(id="data-breaches-by-country"), dcc.Graph(id="two-fa-usage") ], style={"display": "flex", "flexWrap": "wrap"}) ]) app.layout = generate_layout # Callbacks for filtering data and updating graphs @app.callback( [Output("logins-by-country", "figure"), Output("session-duration-by-gender", "figure"), Output("data-breaches-by-country", "figure"), Output("two-fa-usage", "figure"), Output("filtered-data-table", "children")], [Input("country-filter", "value"), Input("gender-filter", "value"), Input("status-filter", "value")] ) def update_dashboard(selected_countries, selected_genders, selected_statuses): # Filter data filtered_data = data[ (data["Country"].isin(selected_countries)) & (data["Gender"].isin(selected_genders)) & (data["Account Status"].isin(selected_statuses)) ] # Logins by country logins_by_country = filtered_data.groupby("Country")["Number of Logins"].sum().reset_index() fig1 = px.bar(logins_by_country, x="Country", y="Number of Logins", title="Logins by Country", color="Country") # Session duration by gender session_duration_by_gender = filtered_data.groupby("Gender")["Session Duration (Minutes)"].mean().reset_index() fig2 = px.bar(session_duration_by_gender, x="Gender", y="Session Duration (Minutes)", title="Session Duration by Gender", color="Gender") # Data breaches by country fig3 = px.pie(filtered_data, names="Country", values="Data Breaches Reported", title="Data Breaches by Country") # 2FA usage two_fa_usage = filtered_data["2FA Enabled"].value_counts().reset_index() two_fa_usage.columns = ["2FA Enabled", "Count"] fig4 = px.pie(two_fa_usage, names="2FA Enabled", values="Count", title="2FA Usage") # Filtered data table table_html = html.Div([ html.H3("Filtered Data Table"), dash.dash_table.DataTable( data=filtered_data.to_dict('records'), columns=[{"name": i, "id": i} for i in filtered_data.columns], page_size=10, style_table={"overflowX": "auto"} ) ]) return fig1, fig2, fig3, fig4, table_html # Run app if __name__ == "__main__": app.run_server(host='0.0.0.0', port=7860, debug=False)