Spaces:
Sleeping
Sleeping
File size: 3,128 Bytes
8406c99 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
import gradio as gr
import pandas as pd
import plotly.express as px
# Load the data
def load_data():
file_path = 'digital_identity_data.xlsx'
return pd.read_excel(file_path)
data = load_data()
# Function for filtering data
def filter_data(countries, genders, statuses):
filtered_data = data[
(data["Country"].isin(countries)) &
(data["Gender"].isin(genders)) &
(data["Account Status"].isin(statuses))
]
return filtered_data
# Function to generate visualizations
def generate_dashboard(countries, genders, statuses):
filtered_data = filter_data(countries, genders, statuses)
# Logins by country
logins_by_country = filtered_data.groupby("Country")["Number of Logins"].sum().reset_index()
fig1 = px.bar(logins_by_country, x="Country", y="Number of Logins", title="Logins by Country", color="Country")
# Session duration by gender
session_duration_by_gender = filtered_data.groupby("Gender")["Session Duration (Minutes)"].mean().reset_index()
fig2 = px.bar(session_duration_by_gender, x="Gender", y="Session Duration (Minutes)", title="Session Duration by Gender", color="Gender")
# Data breaches by country
fig3 = px.pie(filtered_data, names="Country", values="Data Breaches Reported", title="Data Breaches by Country")
# 2FA usage
two_fa_usage = filtered_data["2FA Enabled"].value_counts().reset_index()
two_fa_usage.columns = ["2FA Enabled", "Count"]
fig4 = px.pie(two_fa_usage, names="2FA Enabled", values="Count", title="2FA Usage")
return filtered_data, fig1, fig2, fig3, fig4
# Gradio Blocks app
with gr.Blocks() as demo:
gr.Markdown("# Digital Identity Dashboard")
with gr.Row():
countries = gr.CheckboxGroup(choices=data["Country"].unique().tolist(), label="Select Countries", value=data["Country"].unique().tolist())
genders = gr.CheckboxGroup(choices=data["Gender"].unique().tolist(), label="Select Genders", value=data["Gender"].unique().tolist())
statuses = gr.CheckboxGroup(choices=data["Account Status"].unique().tolist(), label="Select Account Status", value=data["Account Status"].unique().tolist())
with gr.Row():
filtered_data_table = gr.Dataframe(label="Filtered Data")
with gr.Row():
fig1_display = gr.HTML(label="Logins by Country")
fig2_display = gr.HTML(label="Session Duration by Gender")
with gr.Row():
fig3_display = gr.HTML(label="Data Breaches by Country")
fig4_display = gr.HTML(label="2FA Usage")
def update_dashboard(countries, genders, statuses):
filtered_data, fig1, fig2, fig3, fig4 = generate_dashboard(countries, genders, statuses)
return (
filtered_data,
fig1.to_html(),
fig2.to_html(),
fig3.to_html(),
fig4.to_html()
)
update_button = gr.Button("Update Dashboard")
update_button.click(
update_dashboard,
inputs=[countries, genders, statuses],
outputs=[filtered_data_table, fig1_display, fig2_display, fig3_display, fig4_display]
)
demo.launch(debug=True, share=False) |