File size: 30,628 Bytes
9da7c8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
from typing import Callable, List, Optional, Tuple, Union

import numpy as np
import torch
import torch.utils.checkpoint

import PIL
from transformers import (
    CLIPFeatureExtractor,
    CLIPTextModelWithProjection,
    CLIPTokenizer,
    CLIPVisionModelWithProjection,
)

from ...models import AutoencoderKL, UNet2DConditionModel
from ...models.attention import DualTransformer2DModel, Transformer2DModel
from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from ...schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from ...utils import is_accelerate_available, logging
from .modeling_text_unet import UNetFlatConditionModel


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


class VersatileDiffusionDualGuidedPipeline(DiffusionPipeline):
    r"""
    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    Parameters:
        vqvae ([`VQModel`]):
            Vector-quantized (VQ) Model to encode and decode images to and from latent representations.
        bert ([`LDMBertModel`]):
            Text-encoder model based on [BERT](https://huggingface.co/docs/transformers/model_doc/bert) architecture.
        tokenizer (`transformers.BertTokenizer`):
            Tokenizer of class
            [BertTokenizer](https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertTokenizer).
        unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
    """
    tokenizer: CLIPTokenizer
    image_feature_extractor: CLIPFeatureExtractor
    text_encoder: CLIPTextModelWithProjection
    image_encoder: CLIPVisionModelWithProjection
    image_unet: UNet2DConditionModel
    text_unet: UNetFlatConditionModel
    vae: AutoencoderKL
    scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler]

    _optional_components = ["text_unet"]

    def __init__(
        self,
        tokenizer: CLIPTokenizer,
        image_feature_extractor: CLIPFeatureExtractor,
        text_encoder: CLIPTextModelWithProjection,
        image_encoder: CLIPVisionModelWithProjection,
        image_unet: UNet2DConditionModel,
        text_unet: UNetFlatConditionModel,
        vae: AutoencoderKL,
        scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
    ):
        super().__init__()
        self.register_modules(
            tokenizer=tokenizer,
            image_feature_extractor=image_feature_extractor,
            text_encoder=text_encoder,
            image_encoder=image_encoder,
            image_unet=image_unet,
            text_unet=text_unet,
            vae=vae,
            scheduler=scheduler,
        )
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)

        if self.text_unet is not None and (
            "dual_cross_attention" not in self.image_unet.config or not self.image_unet.config.dual_cross_attention
        ):
            # if loading from a universal checkpoint rather than a saved dual-guided pipeline
            self._convert_to_dual_attention()

    def remove_unused_weights(self):
        self.register_modules(text_unet=None)

    def _convert_to_dual_attention(self):
        """
        Replace image_unet's `Transformer2DModel` blocks with `DualTransformer2DModel` that contains transformer blocks
        from both `image_unet` and `text_unet`
        """
        for name, module in self.image_unet.named_modules():
            if isinstance(module, Transformer2DModel):
                parent_name, index = name.rsplit(".", 1)
                index = int(index)

                image_transformer = self.image_unet.get_submodule(parent_name)[index]
                text_transformer = self.text_unet.get_submodule(parent_name)[index]

                config = image_transformer.config
                dual_transformer = DualTransformer2DModel(
                    num_attention_heads=config.num_attention_heads,
                    attention_head_dim=config.attention_head_dim,
                    in_channels=config.in_channels,
                    num_layers=config.num_layers,
                    dropout=config.dropout,
                    norm_num_groups=config.norm_num_groups,
                    cross_attention_dim=config.cross_attention_dim,
                    attention_bias=config.attention_bias,
                    sample_size=config.sample_size,
                    num_vector_embeds=config.num_vector_embeds,
                    activation_fn=config.activation_fn,
                    num_embeds_ada_norm=config.num_embeds_ada_norm,
                )
                dual_transformer.transformers[0] = image_transformer
                dual_transformer.transformers[1] = text_transformer

                self.image_unet.get_submodule(parent_name)[index] = dual_transformer
                self.image_unet.register_to_config(dual_cross_attention=True)

    def _revert_dual_attention(self):
        """
        Revert the image_unet `DualTransformer2DModel` blocks back to `Transformer2DModel` with image_unet weights Call
        this function if you reuse `image_unet` in another pipeline, e.g. `VersatileDiffusionPipeline`
        """
        for name, module in self.image_unet.named_modules():
            if isinstance(module, DualTransformer2DModel):
                parent_name, index = name.rsplit(".", 1)
                index = int(index)
                self.image_unet.get_submodule(parent_name)[index] = module.transformers[0]

        self.image_unet.register_to_config(dual_cross_attention=False)

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_attention_slicing with unet->image_unet
    def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
        r"""
        Enable sliced attention computation.

        When this option is enabled, the attention module will split the input tensor in slices, to compute attention
        in several steps. This is useful to save some memory in exchange for a small speed decrease.

        Args:
            slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
                When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
                a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
                `attention_head_dim` must be a multiple of `slice_size`.
        """
        if slice_size == "auto":
            if isinstance(self.image_unet.config.attention_head_dim, int):
                # half the attention head size is usually a good trade-off between
                # speed and memory
                slice_size = self.image_unet.config.attention_head_dim // 2
            else:
                # if `attention_head_dim` is a list, take the smallest head size
                slice_size = min(self.image_unet.config.attention_head_dim)

        self.image_unet.set_attention_slice(slice_size)

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_attention_slicing
    def disable_attention_slicing(self):
        r"""
        Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
        back to computing attention in one step.
        """
        # set slice_size = `None` to disable `attention slicing`
        self.enable_attention_slicing(None)

    def enable_sequential_cpu_offload(self, gpu_id=0):
        r"""
        Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
        text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
        `torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
        """
        if is_accelerate_available():
            from accelerate import cpu_offload
        else:
            raise ImportError("Please install accelerate via `pip install accelerate`")

        device = torch.device(f"cuda:{gpu_id}")

        for cpu_offloaded_model in [self.image_unet, self.text_unet, self.text_encoder, self.vae]:
            if cpu_offloaded_model is not None:
                cpu_offload(cpu_offloaded_model, device)

    @property
    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device with unet->image_unet
    def _execution_device(self):
        r"""
        Returns the device on which the pipeline's models will be executed. After calling
        `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
        hooks.
        """
        if self.device != torch.device("meta") or not hasattr(self.image_unet, "_hf_hook"):
            return self.device
        for module in self.image_unet.modules():
            if (
                hasattr(module, "_hf_hook")
                and hasattr(module._hf_hook, "execution_device")
                and module._hf_hook.execution_device is not None
            ):
                return torch.device(module._hf_hook.execution_device)
        return self.device

    def _encode_text_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
            prompt (`str` or `list(int)`):
                prompt to be encoded
            device: (`torch.device`):
                torch device
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
        """

        def normalize_embeddings(encoder_output):
            embeds = self.text_encoder.text_projection(encoder_output.last_hidden_state)
            embeds_pooled = encoder_output.text_embeds
            embeds = embeds / torch.norm(embeds_pooled.unsqueeze(1), dim=-1, keepdim=True)
            return embeds

        batch_size = len(prompt)

        text_inputs = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=self.tokenizer.model_max_length,
            truncation=True,
            return_tensors="pt",
        )
        text_input_ids = text_inputs.input_ids
        untruncated_ids = self.tokenizer(prompt, padding="max_length", return_tensors="pt").input_ids

        if not torch.equal(text_input_ids, untruncated_ids):
            removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
            logger.warning(
                "The following part of your input was truncated because CLIP can only handle sequences up to"
                f" {self.tokenizer.model_max_length} tokens: {removed_text}"
            )

        if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
            attention_mask = text_inputs.attention_mask.to(device)
        else:
            attention_mask = None

        text_embeddings = self.text_encoder(
            text_input_ids.to(device),
            attention_mask=attention_mask,
        )
        text_embeddings = normalize_embeddings(text_embeddings)

        # duplicate text embeddings for each generation per prompt, using mps friendly method
        bs_embed, seq_len, _ = text_embeddings.shape
        text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
        text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance:
            uncond_tokens = [""] * batch_size
            max_length = text_input_ids.shape[-1]
            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="pt",
            )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = uncond_input.attention_mask.to(device)
            else:
                attention_mask = None

            uncond_embeddings = self.text_encoder(
                uncond_input.input_ids.to(device),
                attention_mask=attention_mask,
            )
            uncond_embeddings = normalize_embeddings(uncond_embeddings)

            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = uncond_embeddings.shape[1]
            uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt, 1)
            uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1)

            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
            text_embeddings = torch.cat([uncond_embeddings, text_embeddings])

        return text_embeddings

    def _encode_image_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
            prompt (`str` or `list(int)`):
                prompt to be encoded
            device: (`torch.device`):
                torch device
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
        """

        def normalize_embeddings(encoder_output):
            embeds = self.image_encoder.vision_model.post_layernorm(encoder_output.last_hidden_state)
            embeds = self.image_encoder.visual_projection(embeds)
            embeds_pooled = embeds[:, 0:1]
            embeds = embeds / torch.norm(embeds_pooled, dim=-1, keepdim=True)
            return embeds

        batch_size = len(prompt) if isinstance(prompt, list) else 1

        # get prompt text embeddings
        image_input = self.image_feature_extractor(images=prompt, return_tensors="pt")
        pixel_values = image_input.pixel_values.to(device).to(self.image_encoder.dtype)
        image_embeddings = self.image_encoder(pixel_values)
        image_embeddings = normalize_embeddings(image_embeddings)

        # duplicate image embeddings for each generation per prompt, using mps friendly method
        bs_embed, seq_len, _ = image_embeddings.shape
        image_embeddings = image_embeddings.repeat(1, num_images_per_prompt, 1)
        image_embeddings = image_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance:
            uncond_images = [np.zeros((512, 512, 3)) + 0.5] * batch_size
            uncond_images = self.image_feature_extractor(images=uncond_images, return_tensors="pt")
            pixel_values = uncond_images.pixel_values.to(device).to(self.image_encoder.dtype)
            uncond_embeddings = self.image_encoder(pixel_values)
            uncond_embeddings = normalize_embeddings(uncond_embeddings)

            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = uncond_embeddings.shape[1]
            uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt, 1)
            uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1)

            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and conditional embeddings into a single batch
            # to avoid doing two forward passes
            image_embeddings = torch.cat([uncond_embeddings, image_embeddings])

        return image_embeddings

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
    def decode_latents(self, latents):
        latents = 1 / 0.18215 * latents
        image = self.vae.decode(latents).sample
        image = (image / 2 + 0.5).clamp(0, 1)
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
        image = image.cpu().permute(0, 2, 3, 1).float().numpy()
        return image

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    def check_inputs(self, prompt, image, height, width, callback_steps):
        if not isinstance(prompt, str) and not isinstance(prompt, PIL.Image.Image) and not isinstance(prompt, list):
            raise ValueError(f"`prompt` has to be of type `str` `PIL.Image` or `list` but is {type(prompt)}")
        if not isinstance(image, str) and not isinstance(image, PIL.Image.Image) and not isinstance(image, list):
            raise ValueError(f"`image` has to be of type `str` `PIL.Image` or `list` but is {type(image)}")

        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

        if (callback_steps is None) or (
            callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
        ):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
    def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
        shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
        if latents is None:
            if device.type == "mps":
                # randn does not work reproducibly on mps
                latents = torch.randn(shape, generator=generator, device="cpu", dtype=dtype).to(device)
            else:
                latents = torch.randn(shape, generator=generator, device=device, dtype=dtype)
        else:
            if latents.shape != shape:
                raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
            latents = latents.to(device)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        return latents

    def set_transformer_params(self, mix_ratio: float = 0.5, condition_types: Tuple = ("text", "image")):
        for name, module in self.image_unet.named_modules():
            if isinstance(module, DualTransformer2DModel):
                module.mix_ratio = mix_ratio

                for i, type in enumerate(condition_types):
                    if type == "text":
                        module.condition_lengths[i] = self.text_encoder.config.max_position_embeddings
                        module.transformer_index_for_condition[i] = 1  # use the second (text) transformer
                    else:
                        module.condition_lengths[i] = 257
                        module.transformer_index_for_condition[i] = 0  # use the first (image) transformer

    @torch.no_grad()
    def __call__(
        self,
        prompt: Union[PIL.Image.Image, List[PIL.Image.Image]],
        image: Union[str, List[str]],
        text_to_image_strength: float = 0.5,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[torch.Generator] = None,
        latents: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
        callback_steps: Optional[int] = 1,
        **kwargs,
    ):
        r"""
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`):
                The prompt or prompts to guide the image generation.
            height (`int`, *optional*, defaults to self.image_unet.config.sample_size * self.vae_scale_factor):
                The height in pixels of the generated image.
            width (`int`, *optional*, defaults to self.image_unet.config.sample_size * self.vae_scale_factor):
                The width in pixels of the generated image.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
                if `guidance_scale` is less than `1`).
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
                [`schedulers.DDIMScheduler`], will be ignored for others.
            generator (`torch.Generator`, *optional*):
                A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
                deterministic.
            latents (`torch.FloatTensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            callback (`Callable`, *optional*):
                A function that will be called every `callback_steps` steps during inference. The function will be
                called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function will be called. If not specified, the callback will be
                called at every step.

        Examples:

        ```py
        >>> from diffusers import VersatileDiffusionDualGuidedPipeline
        >>> import torch
        >>> import requests
        >>> from io import BytesIO
        >>> from PIL import Image

        >>> # let's download an initial image
        >>> url = "https://huggingface.co/datasets/diffusers/images/resolve/main/benz.jpg"

        >>> response = requests.get(url)
        >>> image = Image.open(BytesIO(response.content)).convert("RGB")
        >>> text = "a red car in the sun"

        >>> pipe = VersatileDiffusionDualGuidedPipeline.from_pretrained(
        ...     "shi-labs/versatile-diffusion", torch_dtype=torch.float16
        ... )
        >>> pipe.remove_unused_weights()
        >>> pipe = pipe.to("cuda")

        >>> generator = torch.Generator(device="cuda").manual_seed(0)
        >>> text_to_image_strength = 0.75

        >>> image = pipe(
        ...     prompt=text, image=image, text_to_image_strength=text_to_image_strength, generator=generator
        ... ).images[0]
        >>> image.save("./car_variation.png")
        ```

        Returns:
            [`~pipelines.stable_diffusion.ImagePipelineOutput`] or `tuple`:
            [`~pipelines.stable_diffusion.ImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple. When
            returning a tuple, the first element is a list with the generated images.
        """
        # 0. Default height and width to unet
        height = height or self.image_unet.config.sample_size * self.vae_scale_factor
        width = width or self.image_unet.config.sample_size * self.vae_scale_factor

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(prompt, image, height, width, callback_steps)

        # 2. Define call parameters
        prompt = [prompt] if not isinstance(prompt, list) else prompt
        image = [image] if not isinstance(image, list) else image
        batch_size = len(prompt)
        device = self._execution_device
        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0

        # 3. Encode input prompts
        text_embeddings = self._encode_text_prompt(prompt, device, num_images_per_prompt, do_classifier_free_guidance)
        image_embeddings = self._encode_image_prompt(image, device, num_images_per_prompt, do_classifier_free_guidance)
        dual_prompt_embeddings = torch.cat([text_embeddings, image_embeddings], dim=1)
        prompt_types = ("text", "image")

        # 4. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps

        # 5. Prepare latent variables
        num_channels_latents = self.image_unet.in_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            dual_prompt_embeddings.dtype,
            device,
            generator,
            latents,
        )

        # 6. Prepare extra step kwargs.
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 7. Combine the attention blocks of the image and text UNets
        self.set_transformer_params(text_to_image_strength, prompt_types)

        # 8. Denoising loop
        for i, t in enumerate(self.progress_bar(timesteps)):
            # expand the latents if we are doing classifier free guidance
            latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
            latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

            # predict the noise residual
            noise_pred = self.image_unet(latent_model_input, t, encoder_hidden_states=dual_prompt_embeddings).sample

            # perform guidance
            if do_classifier_free_guidance:
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

            # compute the previous noisy sample x_t -> x_t-1
            latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample

            # call the callback, if provided
            if callback is not None and i % callback_steps == 0:
                callback(i, t, latents)

        # 9. Post-processing
        image = self.decode_latents(latents)

        # 10. Convert to PIL
        if output_type == "pil":
            image = self.numpy_to_pil(image)

        if not return_dict:
            return (image,)

        return ImagePipelineOutput(images=image)