Spaces:
Runtime error
Runtime error
File size: 11,747 Bytes
9da7c8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
# Copyright 2022 Katherine Crowson, The HuggingFace Team and hlky. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS
from .scheduling_utils import SchedulerMixin, SchedulerOutput
class HeunDiscreteScheduler(SchedulerMixin, ConfigMixin):
"""
Implements Algorithm 2 (Heun steps) from Karras et al. (2022). for discrete beta schedules. Based on the original
k-diffusion implementation by Katherine Crowson:
https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L90
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
[`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
[`~SchedulerMixin.from_pretrained`] functions.
Args:
num_train_timesteps (`int`): number of diffusion steps used to train the model. beta_start (`float`): the
starting `beta` value of inference. beta_end (`float`): the final `beta` value. beta_schedule (`str`):
the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
`linear` or `scaled_linear`.
trained_betas (`np.ndarray`, optional):
option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small`,
`fixed_small_log`, `fixed_large`, `fixed_large_log`, `learned` or `learned_range`.
prediction_type (`str`, default `epsilon`, optional):
prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
https://imagen.research.google/video/paper.pdf)
"""
_compatibles = _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS.copy()
order = 2
@register_to_config
def __init__(
self,
num_train_timesteps: int = 1000,
beta_start: float = 0.00085, # sensible defaults
beta_end: float = 0.012,
beta_schedule: str = "linear",
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
prediction_type: str = "epsilon",
):
if trained_betas is not None:
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
elif beta_schedule == "linear":
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
self.betas = (
torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
)
else:
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
self.alphas = 1.0 - self.betas
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
# set all values
self.set_timesteps(num_train_timesteps, None, num_train_timesteps)
def index_for_timestep(self, timestep):
indices = (self.timesteps == timestep).nonzero()
if self.state_in_first_order:
pos = -1
else:
pos = 0
return indices[pos].item()
def scale_model_input(
self,
sample: torch.FloatTensor,
timestep: Union[float, torch.FloatTensor],
) -> torch.FloatTensor:
"""
Args:
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
current timestep.
sample (`torch.FloatTensor`): input sample timestep (`int`, optional): current timestep
Returns:
`torch.FloatTensor`: scaled input sample
"""
step_index = self.index_for_timestep(timestep)
sigma = self.sigmas[step_index]
sample = sample / ((sigma**2 + 1) ** 0.5)
return sample
def set_timesteps(
self,
num_inference_steps: int,
device: Union[str, torch.device] = None,
num_train_timesteps: Optional[int] = None,
):
"""
Sets the timesteps used for the diffusion chain. Supporting function to be run before inference.
Args:
num_inference_steps (`int`):
the number of diffusion steps used when generating samples with a pre-trained model.
device (`str` or `torch.device`, optional):
the device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
"""
self.num_inference_steps = num_inference_steps
num_train_timesteps = num_train_timesteps or self.config.num_train_timesteps
timesteps = np.linspace(0, num_train_timesteps - 1, num_inference_steps, dtype=float)[::-1].copy()
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
sigmas = torch.from_numpy(sigmas).to(device=device)
self.sigmas = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2), sigmas[-1:]])
# standard deviation of the initial noise distribution
self.init_noise_sigma = self.sigmas.max()
timesteps = torch.from_numpy(timesteps)
timesteps = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2)])
if str(device).startswith("mps"):
# mps does not support float64
self.timesteps = timesteps.to(device, dtype=torch.float32)
else:
self.timesteps = timesteps.to(device=device)
# empty dt and derivative
self.prev_derivative = None
self.dt = None
@property
def state_in_first_order(self):
return self.dt is None
def step(
self,
model_output: Union[torch.FloatTensor, np.ndarray],
timestep: Union[float, torch.FloatTensor],
sample: Union[torch.FloatTensor, np.ndarray],
return_dict: bool = True,
) -> Union[SchedulerOutput, Tuple]:
"""
Args:
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
process from the learned model outputs (most often the predicted noise).
model_output (`torch.FloatTensor` or `np.ndarray`): direct output from learned diffusion model. timestep
(`int`): current discrete timestep in the diffusion chain. sample (`torch.FloatTensor` or `np.ndarray`):
current instance of sample being created by diffusion process.
return_dict (`bool`): option for returning tuple rather than SchedulerOutput class
Returns:
[`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
[`~schedulers.scheduling_utils.SchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
returning a tuple, the first element is the sample tensor.
"""
step_index = self.index_for_timestep(timestep)
if self.state_in_first_order:
sigma = self.sigmas[step_index]
sigma_next = self.sigmas[step_index + 1]
else:
# 2nd order / Heun's method
sigma = self.sigmas[step_index - 1]
sigma_next = self.sigmas[step_index]
# currently only gamma=0 is supported. This usually works best anyways.
# We can support gamma in the future but then need to scale the timestep before
# passing it to the model which requires a change in API
gamma = 0
sigma_hat = sigma * (gamma + 1) # Note: sigma_hat == sigma for now
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
if self.config.prediction_type == "epsilon":
sigma_input = sigma_hat if self.state_in_first_order else sigma_next
pred_original_sample = sample - sigma_input * model_output
elif self.config.prediction_type == "v_prediction":
sigma_input = sigma_hat if self.state_in_first_order else sigma_next
pred_original_sample = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + (
sample / (sigma_input**2 + 1)
)
else:
raise ValueError(
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
)
if self.state_in_first_order:
# 2. Convert to an ODE derivative for 1st order
derivative = (sample - pred_original_sample) / sigma_hat
# 3. delta timestep
dt = sigma_next - sigma_hat
# store for 2nd order step
self.prev_derivative = derivative
self.dt = dt
self.sample = sample
else:
# 2. 2nd order / Heun's method
derivative = (sample - pred_original_sample) / sigma_next
derivative = (self.prev_derivative + derivative) / 2
# 3. take prev timestep & sample
dt = self.dt
sample = self.sample
# free dt and derivative
# Note, this puts the scheduler in "first order mode"
self.prev_derivative = None
self.dt = None
self.sample = None
prev_sample = sample + derivative * dt
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=prev_sample)
def add_noise(
self,
original_samples: torch.FloatTensor,
noise: torch.FloatTensor,
timesteps: torch.FloatTensor,
) -> torch.FloatTensor:
# Make sure sigmas and timesteps have the same device and dtype as original_samples
self.sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
# mps does not support float64
self.timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
else:
self.timesteps = self.timesteps.to(original_samples.device)
timesteps = timesteps.to(original_samples.device)
step_indices = [self.index_for_timestep(t) for t in timesteps]
sigma = self.sigmas[step_indices].flatten()
while len(sigma.shape) < len(original_samples.shape):
sigma = sigma.unsqueeze(-1)
noisy_samples = original_samples + noise * sigma
return noisy_samples
def __len__(self):
return self.config.num_train_timesteps
|