Spaces:
Runtime error
Runtime error
File size: 9,775 Bytes
9da7c8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
# Copyright 2022 NVIDIA and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .scheduling_utils import SchedulerMixin
@dataclass
class KarrasVeOutput(BaseOutput):
"""
Output class for the scheduler's step function output.
Args:
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
derivative (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
Derivative of predicted original image sample (x_0).
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
The predicted denoised sample (x_{0}) based on the model output from the current timestep.
`pred_original_sample` can be used to preview progress or for guidance.
"""
prev_sample: torch.FloatTensor
derivative: torch.FloatTensor
pred_original_sample: Optional[torch.FloatTensor] = None
class KarrasVeScheduler(SchedulerMixin, ConfigMixin):
"""
Stochastic sampling from Karras et al. [1] tailored to the Variance-Expanding (VE) models [2]. Use Algorithm 2 and
the VE column of Table 1 from [1] for reference.
[1] Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based Generative Models."
https://arxiv.org/abs/2206.00364 [2] Song, Yang, et al. "Score-based generative modeling through stochastic
differential equations." https://arxiv.org/abs/2011.13456
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
[`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
[`~SchedulerMixin.from_pretrained`] functions.
For more details on the parameters, see the original paper's Appendix E.: "Elucidating the Design Space of
Diffusion-Based Generative Models." https://arxiv.org/abs/2206.00364. The grid search values used to find the
optimal {s_noise, s_churn, s_min, s_max} for a specific model are described in Table 5 of the paper.
Args:
sigma_min (`float`): minimum noise magnitude
sigma_max (`float`): maximum noise magnitude
s_noise (`float`): the amount of additional noise to counteract loss of detail during sampling.
A reasonable range is [1.000, 1.011].
s_churn (`float`): the parameter controlling the overall amount of stochasticity.
A reasonable range is [0, 100].
s_min (`float`): the start value of the sigma range where we add noise (enable stochasticity).
A reasonable range is [0, 10].
s_max (`float`): the end value of the sigma range where we add noise.
A reasonable range is [0.2, 80].
"""
order = 2
@register_to_config
def __init__(
self,
sigma_min: float = 0.02,
sigma_max: float = 100,
s_noise: float = 1.007,
s_churn: float = 80,
s_min: float = 0.05,
s_max: float = 50,
):
# standard deviation of the initial noise distribution
self.init_noise_sigma = sigma_max
# setable values
self.num_inference_steps: int = None
self.timesteps: np.IntTensor = None
self.schedule: torch.FloatTensor = None # sigma(t_i)
def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
"""
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
current timestep.
Args:
sample (`torch.FloatTensor`): input sample
timestep (`int`, optional): current timestep
Returns:
`torch.FloatTensor`: scaled input sample
"""
return sample
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
"""
Sets the continuous timesteps used for the diffusion chain. Supporting function to be run before inference.
Args:
num_inference_steps (`int`):
the number of diffusion steps used when generating samples with a pre-trained model.
"""
self.num_inference_steps = num_inference_steps
timesteps = np.arange(0, self.num_inference_steps)[::-1].copy()
self.timesteps = torch.from_numpy(timesteps).to(device)
schedule = [
(
self.config.sigma_max**2
* (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1))
)
for i in self.timesteps
]
self.schedule = torch.tensor(schedule, dtype=torch.float32, device=device)
def add_noise_to_input(
self, sample: torch.FloatTensor, sigma: float, generator: Optional[torch.Generator] = None
) -> Tuple[torch.FloatTensor, float]:
"""
Explicit Langevin-like "churn" step of adding noise to the sample according to a factor gamma_i ≥ 0 to reach a
higher noise level sigma_hat = sigma_i + gamma_i*sigma_i.
TODO Args:
"""
if self.config.s_min <= sigma <= self.config.s_max:
gamma = min(self.config.s_churn / self.num_inference_steps, 2**0.5 - 1)
else:
gamma = 0
# sample eps ~ N(0, S_noise^2 * I)
eps = self.config.s_noise * torch.randn(sample.shape, generator=generator).to(sample.device)
sigma_hat = sigma + gamma * sigma
sample_hat = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)
return sample_hat, sigma_hat
def step(
self,
model_output: torch.FloatTensor,
sigma_hat: float,
sigma_prev: float,
sample_hat: torch.FloatTensor,
return_dict: bool = True,
) -> Union[KarrasVeOutput, Tuple]:
"""
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
process from the learned model outputs (most often the predicted noise).
Args:
model_output (`torch.FloatTensor`): direct output from learned diffusion model.
sigma_hat (`float`): TODO
sigma_prev (`float`): TODO
sample_hat (`torch.FloatTensor`): TODO
return_dict (`bool`): option for returning tuple rather than KarrasVeOutput class
KarrasVeOutput: updated sample in the diffusion chain and derivative (TODO double check).
Returns:
[`~schedulers.scheduling_karras_ve.KarrasVeOutput`] or `tuple`:
[`~schedulers.scheduling_karras_ve.KarrasVeOutput`] if `return_dict` is True, otherwise a `tuple`. When
returning a tuple, the first element is the sample tensor.
"""
pred_original_sample = sample_hat + sigma_hat * model_output
derivative = (sample_hat - pred_original_sample) / sigma_hat
sample_prev = sample_hat + (sigma_prev - sigma_hat) * derivative
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=sample_prev, derivative=derivative, pred_original_sample=pred_original_sample
)
def step_correct(
self,
model_output: torch.FloatTensor,
sigma_hat: float,
sigma_prev: float,
sample_hat: torch.FloatTensor,
sample_prev: torch.FloatTensor,
derivative: torch.FloatTensor,
return_dict: bool = True,
) -> Union[KarrasVeOutput, Tuple]:
"""
Correct the predicted sample based on the output model_output of the network. TODO complete description
Args:
model_output (`torch.FloatTensor`): direct output from learned diffusion model.
sigma_hat (`float`): TODO
sigma_prev (`float`): TODO
sample_hat (`torch.FloatTensor`): TODO
sample_prev (`torch.FloatTensor`): TODO
derivative (`torch.FloatTensor`): TODO
return_dict (`bool`): option for returning tuple rather than KarrasVeOutput class
Returns:
prev_sample (TODO): updated sample in the diffusion chain. derivative (TODO): TODO
"""
pred_original_sample = sample_prev + sigma_prev * model_output
derivative_corr = (sample_prev - pred_original_sample) / sigma_prev
sample_prev = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=sample_prev, derivative=derivative, pred_original_sample=pred_original_sample
)
def add_noise(self, original_samples, noise, timesteps):
raise NotImplementedError()
|