Medi_Mind / app.py
Yesandu's picture
Update space
282969e
raw
history blame
2.58 kB
from transformers import AutoTokenizer, TFAutoModelForSequenceClassification
import tensorflow as tf
import gradio as gr
# Load the tokenizer and model
model_name = "Zabihin/Symptom_to_Diagnosis"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = TFAutoModelForSequenceClassification.from_pretrained(model_name)
# Clean the input text
def clean_input(symptom_text):
# Remove unwanted characters or non-ASCII characters
symptom_text = ''.join([c for c in symptom_text if ord(c) < 128])
symptom_text = symptom_text.lower() # Optional: Convert to lowercase
return symptom_text
# Define the predict function
def predict(symptom_text, chat_history=[]):
try:
# Clean the input
symptom_text = clean_input(symptom_text)
# Tokenize the input
inputs = tokenizer(symptom_text, return_tensors="tf", padding=True, truncation=True, max_length=512)
# Get model output
outputs = model(**inputs)
logits = outputs.logits
prediction = tf.argmax(logits, axis=-1).numpy()[0]
# Map the prediction to a label
labels = {
0: "Allergy", 1: "Arthritis", 2: "Bronchial Asthma", 3: "Cervical Spondylosis",
4: "Chicken Pox", 5: "Common Cold", 6: "Dengue", 7: "Diabetes", 8: "Drug Reaction",
9: "Fungal Infection", 10: "Gastroesophageal Reflux Disease", 11: "Hypertension",
12: "Impetigo", 13: "Jaundice", 14: "Malaria", 15: "Migraine", 16: "Peptic Ulcer Disease",
17: "Pneumonia", 18: "Psoriasis", 19: "Typhoid", 20: "Urinary Tract Infection", 21: "Varicose Veins"
}
diagnosis = labels.get(prediction, "Unknown diagnosis")
# Add conversation history
chat_history.append(("User", symptom_text))
chat_history.append(("AI", f"Predicted Diagnosis: {diagnosis}. Please consult a doctor for more accurate results."))
except Exception as e:
chat_history.append(("AI", f"Error: {str(e)}"))
return chat_history, ""
# Gradio UI
with gr.Blocks() as interface:
gr.Markdown("<h1 style='text-align: center; margin-top: 20px; margin-bottom: 20px; font-size: 36px;'>Medi Mind - Your AI Health Assistant</h1>")
chatbot = gr.Chatbot()
input_box = gr.Textbox(show_label=False, placeholder="Describe your symptoms here...")
send_button = gr.Button("Send")
input_box.submit(predict, [input_box, chatbot], [chatbot, input_box])
send_button.click(predict, [input_box, chatbot], [chatbot, input_box])
if __name__ == "__main__":
interface.launch(share=True)