File size: 15,713 Bytes
b56563d
 
d649c17
 
b56563d
 
 
4e4454b
b56563d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e4454b
 
b56563d
 
 
 
 
 
 
 
 
4e4454b
 
b56563d
 
 
 
807834f
b4d145e
807834f
 
 
b56563d
5e2e1fb
b56563d
 
 
5e2e1fb
ca453e8
 
 
b56563d
 
 
 
 
 
 
 
 
 
 
 
 
 
5e2e1fb
b56563d
 
 
 
 
 
 
 
 
 
 
 
5e2e1fb
b56563d
 
 
 
 
 
5e2e1fb
d0fa4b0
ca453e8
 
 
20ed3ea
 
 
 
 
b56563d
20ed3ea
b56563d
 
9259578
b56563d
9259578
4e4454b
 
 
9bf390d
ca453e8
9259578
4e4454b
b56563d
 
 
 
 
 
9259578
b56563d
 
9259578
b56563d
 
 
 
 
 
 
 
 
 
 
 
 
9259578
b56563d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c13858c
b56563d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e4454b
 
 
 
 
 
 
9259578
4e4454b
b56563d
 
 
 
 
 
9259578
b56563d
3163ba6
 
 
 
b56563d
3163ba6
b56563d
3163ba6
b56563d
 
 
4e4454b
b56563d
 
 
 
 
 
 
 
 
9259578
b56563d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d649c17
b56563d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import gradio as gr
import subprocess
import os
import sys
import time
import pandas as pd
from threading import Thread
import numpy as np

# Add the path to the "src" directory of detect-pretrain-code-contamination to the sys.path
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), "detect-pretrain-code-contamination"))
src_dir = os.path.join(project_root, "src")
sys.path.insert(0, src_dir)

import run as evaluator  # Import the run module
from src.css_html import custom_css
from src.text_content import ABOUT_TEXT, SUBMISSION_TEXT, SUBMISSION_TEXT_2
from src.envs import API, H4_TOKEN, REPO_ID
from huggingface_hub import HfApi
from src.utils import (
    AutoEvalColumn,
    fields,
    is_model_on_hub,
    make_clickable_names,
    styled_error,
    styled_message,
    EVAL_COLS,
    EVAL_TYPES
)

COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]

# CONFIGURATION:
test_datasets = ["truthful_qa","cais/mmlu","ai2_arc","gsm8k","Rowan/hellaswag","winogrande"]
modelQueue = (pd.read_csv('data/queue.csv')).values.tolist()
print(modelQueue)

def restart_space(): #Most dumbest update function to ever exist, I'm sobbing in tears as I've tried to make gradio update the leaderboard literally any other way.
    API.restart_space(repo_id=REPO_ID, token=H4_TOKEN)

def formatr(result):
    result = str(result)
    result = result.split(",")[2].replace(")","")
    result = result.replace(" ","")
    return result

def save_to_txt(model, results, model_type,ref_model):
    file_path = "data/code_eval_board.csv"

    with open(file_path, "a") as f:
        f.write(f"\n{model_type},{model}," + str(formatr(results["arc"])) + "," + str(formatr(results["hellaswag"])) + "," + str(formatr(results["mmlu"])) + "," + str(formatr(results["truthfulQA"])) + "," + str(formatr(results["winogrande"])) + "," + str(formatr(results["gsm8k"])) + f",{ref_model}")
        
        print(f"Finished evaluation of model: {model} using ref_model: {ref_model}")
        print(f"\n{model_type},{model}," + str(formatr(results["arc"])) + "," + str(formatr(results["hellaswag"])) + "," + str(formatr(results["mmlu"])) + "," + str(formatr(results["truthfulQA"])) + "," + str(formatr(results["winogrande"])) + "," + str(formatr(results["gsm8k"])) + f",{ref_model}")
        f.close()

def run_test(model,ref_model,data):
    print(f"|| TESTING {data} ||")
    return evaluator.main(
                target_model=f"{model}",
                ref_model=f"{ref_model}",
                output_dir="out",
                data=f"{data}",
                length=64,
                key_name="input",
                ratio_gen=0.4
            ) # Call the main function in detect-pretrain-code-contamination/src/run.py

def evaluate(model,model_type,ref_model):
    print(f"|| EVALUATING {model} ||")
    results = {
        "arc": run_test(model, ref_model, test_datasets[2]),
        "hellaswag": run_test(model, ref_model, test_datasets[4]),
        "mmlu": run_test(model, ref_model, test_datasets[1]),
        "truthfulQA": run_test(model, ref_model, test_datasets[0]),
        "winogrande": run_test(model, ref_model, test_datasets[5]),
        "gsm8k": run_test(model, ref_model, test_datasets[3]),
        "ref_model": ref_model,
    }

    # Save to .txt file in /Evaluations/{model}
    save_to_txt(model, results, model_type,ref_model)
    return "\n".join([f"{k}:{results[k]}" for k in results])

def worker_thread():
    global modelQueue, server
    while True:
        for submission in modelQueue:
            #evaluate(submission[1],submission[0].split(" ")[0],submission[2])
            #modelQueue.pop(modelQueue.index(submission))
            #exit()
            
            #The exit above is temporal while I figure out how to unload a model from a thread or similar.
            # Uncomment those lines in order to begin testing, I test these models outside of this space and later commit the results back.
            # I highly encourage you to try to reproduce the results I get using your own implementation.
            # Do NOT take anything listed here as fact, as I'm not 100% my implementation works as intended.
            # Take whatever you see in the leaderboard as a grain of salt, do NOT accuse models of cheating just because of their placement here alone.

            time.sleep(1)
        
        time.sleep(1)

def queue(model,model_type,ref_model):
    global modelQueue
    modelQueue.append([model_type,model,ref_model])

    file_path = "data/queue.csv"
    with open(file_path, "a") as f:
        model = model.strip()
        ref_model = ref_model.strip()
        f.write(f"\n{model_type},{model},{ref_model}")
        f.close()
    print(f"QUEUE:\n{modelQueue}")

### bigcode/bigcode-models-leaderboard
def add_new_eval(
    model: str,
    revision: str,
    ref_model: str,
    model_type: str,
):
    ref_model = ref_model

    if model_type is None or model_type == "" or model_type == []:
        return styled_error("Please select a model type.")
    print(model_type)
    # check the model actually exists before adding the eval
    if revision == "":
        revision = "main"

    model_on_hub, error = is_model_on_hub(model, revision)
    if not model_on_hub:
        return styled_error(f'Model "{model}" {error}')

    print("Adding new eval")
    queue(model,model_type,ref_model)
    return styled_message("Your request has been submitted to the evaluation queue!\n")

def select_columns(df, columns):
    always_here_cols = [
        AutoEvalColumn.model_type_symbol.name,
        AutoEvalColumn.model.name,
    ]
    # We use COLS to maintain sorting
    filtered_df = df[
        always_here_cols + [c for c in COLS if c in df.columns and c in columns]
    ]
    return filtered_df


def filter_items(df, leaderboard_table, query):
    if query == "All":
        return df[leaderboard_table.columns]
    else:
        query = query[0]  # take only the emoji character
    filtered_df = df[(df["T"] == query)]
    return filtered_df[leaderboard_table.columns]

def search_table(df, leaderboard_table, query):
    filtered_df = df[(df["Models"].str.contains(query, case=False))]
    return filtered_df[leaderboard_table.columns]

demo = gr.Blocks(css=custom_css)
with demo:
    with gr.Row():
        gr.Markdown(
            """<div style="text-align: center;"><h1> πŸ“„ LLM Contamination Detector </h1></div>\
            <br>\
            <p>Inspired from the <a href="https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard">πŸ€— Open LLM Leaderboard</a> and <a href="https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard">πŸ€— Big Code Models Leaderboard ⭐</a>, we use an implementation of <a href="https://huggingface.co/papers/2310.16789">Detecting Pretraining Data from Large Language Models</a> paper found in <a href="https://github.com/swj0419/detect-pretrain-code-contamination/tree/master">this github repo</a>, to provide contamination scores for LLMs on the datasets used by Open LLM Leaderboard.\
            This space should NOT be used to flag or accuse models of cheating / being contamined, instead, it should form part of a holistic assesment by the parties involved.</p>""",
            elem_classes="markdown-text",
        )

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.Column():
            with gr.Tabs(elem_classes="A100-tabs") as A100_tabs:
                with gr.TabItem("πŸ” Evaluations", id=0):
                    with gr.Column():
                        with gr.Accordion("➑️ See filters", open=False):
                            shown_columns = gr.CheckboxGroup(
                                choices=[
                                    c
                                    for c in COLS
                                    if c
                                    not in [
                                        AutoEvalColumn.dummy.name,
                                        AutoEvalColumn.model.name,
                                        AutoEvalColumn.model_type_symbol.name,
                                    ]
                                ],
                                value=[
                                    c
                                    for c in COLS_LITE
                                    if c
                                    not in [
                                        AutoEvalColumn.dummy.name,
                                        AutoEvalColumn.model.name,
                                        AutoEvalColumn.model_type_symbol.name,
                                    ]
                                ],
                                label="",
                                elem_id="column-select",
                                interactive=True,
                            )
                        # with gr.Column(min_width=780):
                        with gr.Row():
                            search_bar = gr.Textbox(
                                placeholder="πŸ” Search for a model and press ENTER...",
                                show_label=False,
                                elem_id="search-bar",
                            )
                            filter_columns = gr.Radio(
                                label="⏚ Filter model types",
                                choices=["All", "🟒 Base", "πŸ”Ά Finetuned"],
                                value="All",
                                elem_id="filter-columns",
                            )

                    df = pd.read_csv("data/code_eval_board.csv")
                    leaderboard_df = gr.components.Dataframe(
                        value=df[
                            [
                                AutoEvalColumn.model_type_symbol.name,
                                AutoEvalColumn.model.name,
                            ]
                            + shown_columns.value
                        ],
                        headers=[
                            AutoEvalColumn.model_type_symbol.name,
                            AutoEvalColumn.model.name,
                        ]
                        + shown_columns.value,
                        datatype=TYPES,
                        elem_id="leaderboard-table",
                        interactive=False,
                    )

                    hidden_leaderboard_df = gr.components.Dataframe(
                        value=df,
                        headers=COLS,
                        datatype=["str" for _ in range(len(COLS))],
                        visible=False,
                    )

                    search_bar.submit(
                        search_table,
                        [hidden_leaderboard_df, leaderboard_df, search_bar],
                        leaderboard_df,
                    )

                    filter_columns.change(
                        filter_items,
                        [hidden_leaderboard_df, leaderboard_df, filter_columns],
                        leaderboard_df,
                    )

                    shown_columns.change(
                        select_columns,
                        [hidden_leaderboard_df, shown_columns],
                        leaderboard_df,
                    )

                    gr.Markdown(
                        """
                    **Notes:**
                    - The Huggingface team is working on their own implementation of this paper as a space, I'll be leaving this space up until that's available.
                    - Some scores may not be entirely accurate according to the paper cited as I still work out the kinks and innacuracies of this implementation.
                    - For any issues, questions, or comments either open a discussion in this space's community tab or message me directly to my discord: yeyito777.
                    - Make sure to check the pinned discussion in this space's community tab for implementation details I'm not 100% about.
                    """,
                        elem_classes="markdown-text",
                    )

                with gr.TabItem("πŸ“ About", id=2):
                    gr.Markdown(ABOUT_TEXT, elem_classes="markdown-text")
                with gr.TabItem("πŸ› οΈ Submit models", id=3):
                    gr.Markdown(SUBMISSION_TEXT)
                    gr.Markdown(
                        "## πŸ“€  Submit a model here:", elem_classes="markdown-text"
                    )
                    with gr.Column():
                        with gr.Column():
                            with gr.Accordion(
                                f"⏳ Evaluation Queue ({len(modelQueue)})",
                                open=False,
                            ):
                                with gr.Row():
                                    finished_eval_table = gr.components.Dataframe(
                                            value=pd.DataFrame(modelQueue, columns=['Type','Model','Reference Model']),
                                    )
                        with gr.Row():
                            model_name = gr.Textbox(label="Model name")
                            revision_name = gr.Textbox(
                                label="revision", placeholder="main"
                            )
                        with gr.Row():
                            ref_model = gr.Dropdown(
                                choices=[
                                    "mistralai/Mistral-7B-v0.1",
                                    "huggyllama/llama-7b",
                                    "NousResearch/Llama-2-7b-hf",
                                    "upstage/SOLAR-10.7B-v1.0",
                                ],
                                label="Reference Model",
                                multiselect=False,
                                value="mistralai/Mistral-7B-v0.1",
                                interactive=True,
                            )
                            model_type = gr.Dropdown(
                                choices=["🟒 base", "πŸ”Ά finetuned"],
                                label="Model type",
                                multiselect=False,
                                value=None,
                                interactive=True,
                            )
                        submit_button = gr.Button("Submit Eval")
                        submission_result = gr.Markdown()
                        submit_button.click(
                            add_new_eval,
                            inputs=[model_name, revision_name, ref_model, model_type],
                            outputs=[submission_result],
                        )
                        gr.Markdown(SUBMISSION_TEXT_2)

thread = Thread(target=worker_thread)
thread.start()
demo.launch(share=True)

# Some worries:
# 1. Am I testing things correctly in eval.py, following the template format?

# 2. Am I choosing the correct splits in run.py? The higherarchy I use is: test > val > train
#   (As in: if test exists, I go with that, then validation, then default)

# 3. I decided to go with winogrande_debiased instead of winogrande_l arbitrarily.
#   (Not sure which one open llm leaderboard uses, or what is the standard)

# 4. I'm unsure why in eval.py we append the output at the end of the input.

# 5. Currently I'm using huggyllama/llama-7b as ref_model, should I switch to llama2-7B? Maybe Mistral-7B?