Spaces:
Runtime error
Runtime error
File size: 15,713 Bytes
b56563d d649c17 b56563d 4e4454b b56563d 4e4454b b56563d 4e4454b b56563d 807834f b4d145e 807834f b56563d 5e2e1fb b56563d 5e2e1fb ca453e8 b56563d 5e2e1fb b56563d 5e2e1fb b56563d 5e2e1fb d0fa4b0 ca453e8 20ed3ea b56563d 20ed3ea b56563d 9259578 b56563d 9259578 4e4454b 9bf390d ca453e8 9259578 4e4454b b56563d 9259578 b56563d 9259578 b56563d 9259578 b56563d c13858c b56563d 4e4454b 9259578 4e4454b b56563d 9259578 b56563d 3163ba6 b56563d 3163ba6 b56563d 3163ba6 b56563d 4e4454b b56563d 9259578 b56563d d649c17 b56563d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
import gradio as gr
import subprocess
import os
import sys
import time
import pandas as pd
from threading import Thread
import numpy as np
# Add the path to the "src" directory of detect-pretrain-code-contamination to the sys.path
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), "detect-pretrain-code-contamination"))
src_dir = os.path.join(project_root, "src")
sys.path.insert(0, src_dir)
import run as evaluator # Import the run module
from src.css_html import custom_css
from src.text_content import ABOUT_TEXT, SUBMISSION_TEXT, SUBMISSION_TEXT_2
from src.envs import API, H4_TOKEN, REPO_ID
from huggingface_hub import HfApi
from src.utils import (
AutoEvalColumn,
fields,
is_model_on_hub,
make_clickable_names,
styled_error,
styled_message,
EVAL_COLS,
EVAL_TYPES
)
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
# CONFIGURATION:
test_datasets = ["truthful_qa","cais/mmlu","ai2_arc","gsm8k","Rowan/hellaswag","winogrande"]
modelQueue = (pd.read_csv('data/queue.csv')).values.tolist()
print(modelQueue)
def restart_space(): #Most dumbest update function to ever exist, I'm sobbing in tears as I've tried to make gradio update the leaderboard literally any other way.
API.restart_space(repo_id=REPO_ID, token=H4_TOKEN)
def formatr(result):
result = str(result)
result = result.split(",")[2].replace(")","")
result = result.replace(" ","")
return result
def save_to_txt(model, results, model_type,ref_model):
file_path = "data/code_eval_board.csv"
with open(file_path, "a") as f:
f.write(f"\n{model_type},{model}," + str(formatr(results["arc"])) + "," + str(formatr(results["hellaswag"])) + "," + str(formatr(results["mmlu"])) + "," + str(formatr(results["truthfulQA"])) + "," + str(formatr(results["winogrande"])) + "," + str(formatr(results["gsm8k"])) + f",{ref_model}")
print(f"Finished evaluation of model: {model} using ref_model: {ref_model}")
print(f"\n{model_type},{model}," + str(formatr(results["arc"])) + "," + str(formatr(results["hellaswag"])) + "," + str(formatr(results["mmlu"])) + "," + str(formatr(results["truthfulQA"])) + "," + str(formatr(results["winogrande"])) + "," + str(formatr(results["gsm8k"])) + f",{ref_model}")
f.close()
def run_test(model,ref_model,data):
print(f"|| TESTING {data} ||")
return evaluator.main(
target_model=f"{model}",
ref_model=f"{ref_model}",
output_dir="out",
data=f"{data}",
length=64,
key_name="input",
ratio_gen=0.4
) # Call the main function in detect-pretrain-code-contamination/src/run.py
def evaluate(model,model_type,ref_model):
print(f"|| EVALUATING {model} ||")
results = {
"arc": run_test(model, ref_model, test_datasets[2]),
"hellaswag": run_test(model, ref_model, test_datasets[4]),
"mmlu": run_test(model, ref_model, test_datasets[1]),
"truthfulQA": run_test(model, ref_model, test_datasets[0]),
"winogrande": run_test(model, ref_model, test_datasets[5]),
"gsm8k": run_test(model, ref_model, test_datasets[3]),
"ref_model": ref_model,
}
# Save to .txt file in /Evaluations/{model}
save_to_txt(model, results, model_type,ref_model)
return "\n".join([f"{k}:{results[k]}" for k in results])
def worker_thread():
global modelQueue, server
while True:
for submission in modelQueue:
#evaluate(submission[1],submission[0].split(" ")[0],submission[2])
#modelQueue.pop(modelQueue.index(submission))
#exit()
#The exit above is temporal while I figure out how to unload a model from a thread or similar.
# Uncomment those lines in order to begin testing, I test these models outside of this space and later commit the results back.
# I highly encourage you to try to reproduce the results I get using your own implementation.
# Do NOT take anything listed here as fact, as I'm not 100% my implementation works as intended.
# Take whatever you see in the leaderboard as a grain of salt, do NOT accuse models of cheating just because of their placement here alone.
time.sleep(1)
time.sleep(1)
def queue(model,model_type,ref_model):
global modelQueue
modelQueue.append([model_type,model,ref_model])
file_path = "data/queue.csv"
with open(file_path, "a") as f:
model = model.strip()
ref_model = ref_model.strip()
f.write(f"\n{model_type},{model},{ref_model}")
f.close()
print(f"QUEUE:\n{modelQueue}")
### bigcode/bigcode-models-leaderboard
def add_new_eval(
model: str,
revision: str,
ref_model: str,
model_type: str,
):
ref_model = ref_model
if model_type is None or model_type == "" or model_type == []:
return styled_error("Please select a model type.")
print(model_type)
# check the model actually exists before adding the eval
if revision == "":
revision = "main"
model_on_hub, error = is_model_on_hub(model, revision)
if not model_on_hub:
return styled_error(f'Model "{model}" {error}')
print("Adding new eval")
queue(model,model_type,ref_model)
return styled_message("Your request has been submitted to the evaluation queue!\n")
def select_columns(df, columns):
always_here_cols = [
AutoEvalColumn.model_type_symbol.name,
AutoEvalColumn.model.name,
]
# We use COLS to maintain sorting
filtered_df = df[
always_here_cols + [c for c in COLS if c in df.columns and c in columns]
]
return filtered_df
def filter_items(df, leaderboard_table, query):
if query == "All":
return df[leaderboard_table.columns]
else:
query = query[0] # take only the emoji character
filtered_df = df[(df["T"] == query)]
return filtered_df[leaderboard_table.columns]
def search_table(df, leaderboard_table, query):
filtered_df = df[(df["Models"].str.contains(query, case=False))]
return filtered_df[leaderboard_table.columns]
demo = gr.Blocks(css=custom_css)
with demo:
with gr.Row():
gr.Markdown(
"""<div style="text-align: center;"><h1> π LLM Contamination Detector </h1></div>\
<br>\
<p>Inspired from the <a href="https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard">π€ Open LLM Leaderboard</a> and <a href="https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard">π€ Big Code Models Leaderboard β</a>, we use an implementation of <a href="https://huggingface.co/papers/2310.16789">Detecting Pretraining Data from Large Language Models</a> paper found in <a href="https://github.com/swj0419/detect-pretrain-code-contamination/tree/master">this github repo</a>, to provide contamination scores for LLMs on the datasets used by Open LLM Leaderboard.\
This space should NOT be used to flag or accuse models of cheating / being contamined, instead, it should form part of a holistic assesment by the parties involved.</p>""",
elem_classes="markdown-text",
)
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.Column():
with gr.Tabs(elem_classes="A100-tabs") as A100_tabs:
with gr.TabItem("π Evaluations", id=0):
with gr.Column():
with gr.Accordion("β‘οΈ See filters", open=False):
shown_columns = gr.CheckboxGroup(
choices=[
c
for c in COLS
if c
not in [
AutoEvalColumn.dummy.name,
AutoEvalColumn.model.name,
AutoEvalColumn.model_type_symbol.name,
]
],
value=[
c
for c in COLS_LITE
if c
not in [
AutoEvalColumn.dummy.name,
AutoEvalColumn.model.name,
AutoEvalColumn.model_type_symbol.name,
]
],
label="",
elem_id="column-select",
interactive=True,
)
# with gr.Column(min_width=780):
with gr.Row():
search_bar = gr.Textbox(
placeholder="π Search for a model and press ENTER...",
show_label=False,
elem_id="search-bar",
)
filter_columns = gr.Radio(
label="β Filter model types",
choices=["All", "π’ Base", "πΆ Finetuned"],
value="All",
elem_id="filter-columns",
)
df = pd.read_csv("data/code_eval_board.csv")
leaderboard_df = gr.components.Dataframe(
value=df[
[
AutoEvalColumn.model_type_symbol.name,
AutoEvalColumn.model.name,
]
+ shown_columns.value
],
headers=[
AutoEvalColumn.model_type_symbol.name,
AutoEvalColumn.model.name,
]
+ shown_columns.value,
datatype=TYPES,
elem_id="leaderboard-table",
interactive=False,
)
hidden_leaderboard_df = gr.components.Dataframe(
value=df,
headers=COLS,
datatype=["str" for _ in range(len(COLS))],
visible=False,
)
search_bar.submit(
search_table,
[hidden_leaderboard_df, leaderboard_df, search_bar],
leaderboard_df,
)
filter_columns.change(
filter_items,
[hidden_leaderboard_df, leaderboard_df, filter_columns],
leaderboard_df,
)
shown_columns.change(
select_columns,
[hidden_leaderboard_df, shown_columns],
leaderboard_df,
)
gr.Markdown(
"""
**Notes:**
- The Huggingface team is working on their own implementation of this paper as a space, I'll be leaving this space up until that's available.
- Some scores may not be entirely accurate according to the paper cited as I still work out the kinks and innacuracies of this implementation.
- For any issues, questions, or comments either open a discussion in this space's community tab or message me directly to my discord: yeyito777.
- Make sure to check the pinned discussion in this space's community tab for implementation details I'm not 100% about.
""",
elem_classes="markdown-text",
)
with gr.TabItem("π About", id=2):
gr.Markdown(ABOUT_TEXT, elem_classes="markdown-text")
with gr.TabItem("π οΈ Submit models", id=3):
gr.Markdown(SUBMISSION_TEXT)
gr.Markdown(
"## π€ Submit a model here:", elem_classes="markdown-text"
)
with gr.Column():
with gr.Column():
with gr.Accordion(
f"β³ Evaluation Queue ({len(modelQueue)})",
open=False,
):
with gr.Row():
finished_eval_table = gr.components.Dataframe(
value=pd.DataFrame(modelQueue, columns=['Type','Model','Reference Model']),
)
with gr.Row():
model_name = gr.Textbox(label="Model name")
revision_name = gr.Textbox(
label="revision", placeholder="main"
)
with gr.Row():
ref_model = gr.Dropdown(
choices=[
"mistralai/Mistral-7B-v0.1",
"huggyllama/llama-7b",
"NousResearch/Llama-2-7b-hf",
"upstage/SOLAR-10.7B-v1.0",
],
label="Reference Model",
multiselect=False,
value="mistralai/Mistral-7B-v0.1",
interactive=True,
)
model_type = gr.Dropdown(
choices=["π’ base", "πΆ finetuned"],
label="Model type",
multiselect=False,
value=None,
interactive=True,
)
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
inputs=[model_name, revision_name, ref_model, model_type],
outputs=[submission_result],
)
gr.Markdown(SUBMISSION_TEXT_2)
thread = Thread(target=worker_thread)
thread.start()
demo.launch(share=True)
# Some worries:
# 1. Am I testing things correctly in eval.py, following the template format?
# 2. Am I choosing the correct splits in run.py? The higherarchy I use is: test > val > train
# (As in: if test exists, I go with that, then validation, then default)
# 3. I decided to go with winogrande_debiased instead of winogrande_l arbitrarily.
# (Not sure which one open llm leaderboard uses, or what is the standard)
# 4. I'm unsure why in eval.py we append the output at the end of the input.
# 5. Currently I'm using huggyllama/llama-7b as ref_model, should I switch to llama2-7B? Maybe Mistral-7B?
|