Yeyito's picture
Upload 16 files
2a135fe
raw
history blame
1.75 kB
import json
import statistics
def load_jsonl(path):
with open(path) as f:
data = [json.loads(line) for line in f]
return data
def analyze_data(data):
all_rmia = []
all_large_1 = []
for ex in data:
# Min_20.0% Prob
score = ex["pred"]["minkprob_w/_ref"] # minkprob_w/_ref
all_rmia.append(score)
if score < 0.1:
all_large_1.append(score)
result = "result < 0.1, %: ", len(all_large_1)/len(all_rmia)
print(result)
return result
# print(f"RMIA mean: {statistics.mean(all_rmia)}")
# print(f"RMIA std: {statistics.stdev(all_rmia)}")
# print(f"RMIA min: {min(all_rmia)}")
# print(f"RMIA max: {max(all_rmia)}")
# # 25% percentile
# print(f"RMIA 25%: {statistics.quantiles(all_rmia)[0]}")
# # 50% percentile
# print(f"RMIA 50%: {statistics.quantiles(all_rmia)[1]}")
# # 75% percentile
# print(f"RMIA 75%: {statistics.quantiles(all_rmia)[2]}")
if __name__ == "__main__":
print("contaminated model")
task = "ai2_arc" # ai2_arc cais/mmlu truthful_qa
# /fsx-onellm/swj0419/attack/test_contamination/detect-pretrain-code/out/ai2_arc/Fredithefish/ReasonixPajama-3B-HF_togethercomputer/RedPajama-INCITE-Chat-3B-v1/input/all_output.jsonl
path = f"/fsx-onellm/swj0419/attack/test_contamination/detect-pretrain-code/out/{task}/Fredithefish/ReasonixPajama-3B-HF_huggyllama/llama-7b/input/all_output.jsonl"
data = load_jsonl(path)
analyze_data(data)
print("raw model")
path = f"/fsx-onellm/swj0419/attack/test_contamination/detect-pretrain-code/out/{task}/togethercomputer/RedPajama-INCITE-Chat-3B-v1_huggyllama/llama-7b/input/all_output.jsonl"
data = load_jsonl(path)
analyze_data(data)