Update app.py
Browse files
app.py
CHANGED
@@ -1,25 +1,65 @@
|
|
1 |
-
|
2 |
from transformers import pipeline
|
|
|
|
|
|
|
3 |
|
|
|
4 |
pipe = pipeline("text-classification", model="cardiffnlp/twitter-roberta-base-sentiment-latest")
|
5 |
-
# Load model directly
|
6 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
from transformers import pipeline
|
12 |
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
#
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
#
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
if user_input:
|
23 |
-
# 调用模型分析用户输入
|
24 |
-
result = pipe(user_input)
|
25 |
-
st.write("Sentiment Analysis Result:", result)
|
|
|
1 |
+
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
from sklearn.metrics import precision_recall_curve, auc
|
6 |
|
7 |
+
# 初始化情感分析模型
|
8 |
pipe = pipeline("text-classification", model="cardiffnlp/twitter-roberta-base-sentiment-latest")
|
|
|
|
|
9 |
|
10 |
+
# 定义页面功能
|
11 |
+
st.sidebar.title("App Navigation")
|
12 |
+
page = st.sidebar.radio("Choose a feature", ["Sentiment Analysis", "Model Evaluation"])
|
|
|
13 |
|
14 |
+
if page == "Sentiment Analysis":
|
15 |
+
# 设置页面标题
|
16 |
+
st.title("Twitter Sentiment Analysis App")
|
17 |
+
|
18 |
+
# 输入框让用户输入文本
|
19 |
+
user_input = st.text_input("Enter a tweet to analyze:")
|
20 |
+
|
21 |
+
if user_input:
|
22 |
+
# 调用模型分析用户输入
|
23 |
+
result = pipe(user_input)
|
24 |
+
st.write("Sentiment Analysis Result:", result)
|
25 |
+
|
26 |
+
elif page == "Model Evaluation":
|
27 |
+
# 设置评估页面标题
|
28 |
+
st.title("Model Precision-Recall Evaluation")
|
29 |
+
|
30 |
+
# 上传真实标签和预测概率
|
31 |
+
st.write("### 输入数据")
|
32 |
+
y_true_input = st.text_area("输入真实标签 (用逗号分隔)", "1,0,1,1,0,1")
|
33 |
+
y_score_input = st.text_area("输入预测概率 (用逗号分隔)", "0.95,0.1,0.85,0.75,0.2,0.9")
|
34 |
+
|
35 |
+
if y_true_input and y_score_input:
|
36 |
+
try:
|
37 |
+
# 解析输入
|
38 |
+
y_true = list(map(int, y_true_input.split(",")))
|
39 |
+
y_score = list(map(float, y_score_input.split(",")))
|
40 |
+
|
41 |
+
# 检查长度是否一致
|
42 |
+
if len(y_true) != len(y_score):
|
43 |
+
st.error("真实标签和预测概率的长度不一致!请重新输入。")
|
44 |
+
else:
|
45 |
+
# 计算 Precision 和 Recall
|
46 |
+
precision, recall, _ = precision_recall_curve(y_true, y_score)
|
47 |
+
pr_auc = auc(recall, precision)
|
48 |
|
49 |
+
# 绘制 PR 曲线
|
50 |
+
fig, ax = plt.subplots()
|
51 |
+
ax.plot(recall, precision, label=f"PR Curve (AUC = {pr_auc:.2f})")
|
52 |
+
ax.set_xlabel("Recall")
|
53 |
+
ax.set_ylabel("Precision")
|
54 |
+
ax.set_title("Precision-Recall Curve")
|
55 |
+
ax.legend(loc="best")
|
56 |
+
ax.grid()
|
57 |
|
58 |
+
# 显示图像
|
59 |
+
st.pyplot(fig)
|
60 |
+
st.success(f"PR Curve AUC: {pr_auc:.2f}")
|
61 |
+
except Exception as e:
|
62 |
+
st.error(f"发生错误: {e}")
|
63 |
+
else:
|
64 |
+
st.info("请输入真实标签和预测概率以生成 PR 曲线。")
|
65 |
|
|
|
|
|
|
|
|