talk-to-me / app.py
YingxuHe's picture
debug
76de1fe
import gradio as gr
import os
import time
from langchain.chains import LLMChain
from langchain.memory import ConversationBufferMemory
from langchain_community.llms import LlamaCpp
from langchain_experimental.chat_models import Llama2Chat
from langchain.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
MessagesPlaceholder,
)
from langchain.schema import SystemMessage
import urllib
urllib.request.urlretrieve(
"https://huggingface.co/hfl/chinese-alpaca-2-1.3b-gguf/resolve/main/ggml-model-q8_0.gguf?download=true",
"ggml-model-q8_0.gguf"
)
template_messages = [
SystemMessage(content="你是一名软件工程师,你的名字叫做贺英旭。请你以这个身份回答以下问题!"),
MessagesPlaceholder(variable_name="chat_history"),
HumanMessagePromptTemplate.from_template("{text}"),
]
prompt_template = ChatPromptTemplate.from_messages(template_messages)
llm = LlamaCpp(
model_path="ggml-model-q8_0.gguf",
temperature=0.75,
max_tokens=64
)
model = Llama2Chat(llm=llm)
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
chain = LLMChain(llm=model, prompt=prompt_template, memory=memory)
def add_text(history, text):
history = history + [(text, None)]
return history, ""
def bot(history):
# session based memory
if len(history) == 1:
chain.memory.clear()
history[-1][1] = ""
user_message = history[-1][0]
for chunk in chain.stream({"text": user_message}):
history[-1][1] += chunk["text"]
yield history
css = """
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
"""
title = """
<div style="text-align: center;max-width: 700px;">
<h1>Chat with Yingxu</h1>
<p style="text-align: center;">Free feel to talk about anything :)</p>
</div>
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML(title)
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=300)
question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ")
submit_btn = gr.Button("Send Message")
question.submit(add_text, [chatbot, question], [chatbot, question]).then(
bot, chatbot, chatbot
)
submit_btn.click(add_text, [chatbot, question], [chatbot, question]).then(
bot, chatbot, chatbot)
demo.launch()