Spaces:
Running
on
Zero
Running
on
Zero
# -*- coding: utf-8 -*- | |
import argparse | |
from omegaconf import OmegaConf | |
import numpy as np | |
import torch | |
from .michelangelo.utils.misc import instantiate_from_config | |
def load_surface(fp): | |
with np.load(fp) as input_pc: | |
surface = input_pc['points'] | |
normal = input_pc['normals'] | |
rng = np.random.default_rng() | |
ind = rng.choice(surface.shape[0], 4096, replace=False) | |
surface = torch.FloatTensor(surface[ind]) | |
normal = torch.FloatTensor(normal[ind]) | |
surface = torch.cat([surface, normal], dim=-1).unsqueeze(0).cuda() | |
return surface | |
def reconstruction(args, model, bounds=(-1.25, -1.25, -1.25, 1.25, 1.25, 1.25), octree_depth=7, num_chunks=10000): | |
surface = load_surface(args.pointcloud_path) | |
# old_surface = surface.clone() | |
# surface[0,:,0]*=-1 | |
# surface[0,:,1]*=-1 | |
surface[0,:,2]*=-1 | |
# encoding | |
shape_embed, shape_latents = model.model.encode_shape_embed(surface, return_latents=True) | |
shape_zq, posterior = model.model.shape_model.encode_kl_embed(shape_latents) | |
# decoding | |
latents = model.model.shape_model.decode(shape_zq) | |
# geometric_func = partial(model.model.shape_model.query_geometry, latents=latents) | |
return 0 | |
def load_model(ckpt_path="MeshAnything/miche/shapevae-256.ckpt"): | |
model_config = OmegaConf.load("MeshAnything/miche/shapevae-256.yaml") | |
# print(model_config) | |
if hasattr(model_config, "model"): | |
model_config = model_config.model | |
model = instantiate_from_config(model_config, ckpt_path=ckpt_path) | |
model = model.cuda() | |
model = model.eval() | |
return model | |
if __name__ == "__main__": | |
''' | |
1. Reconstruct point cloud | |
2. Image-conditioned generation | |
3. Text-conditioned generation | |
''' | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--config_path", type=str, required=True) | |
parser.add_argument("--ckpt_path", type=str, required=True) | |
parser.add_argument("--pointcloud_path", type=str, default='./example_data/surface.npz', help='Path to the input point cloud') | |
parser.add_argument("--image_path", type=str, help='Path to the input image') | |
parser.add_argument("--text", type=str, help='Input text within a format: A 3D model of motorcar; Porsche 911.') | |
parser.add_argument("--output_dir", type=str, default='./output') | |
parser.add_argument("-s", "--seed", type=int, default=0) | |
args = parser.parse_args() | |
print(f'-----------------------------------------------------------------------------') | |
print(f'>>> Output directory: {args.output_dir}') | |
print(f'-----------------------------------------------------------------------------') | |
reconstruction(args, load_model(args)) |